Ten Energy Predictions For The Next Decade

Snow on the San Gabriel Mountains (photo by Jerry Thompson1)
Snow on the San Gabriel Mountains (photo by Jerry Thompson1, CC 2.0 license)

On December 30 of last year (six days ago), my wife and I were in Pasadena, CA visiting the Greene and Greene exhibit at the Huntington Library. It was one of those glorious and rare smog-free days in the LA basin. The air sparkled, you could see for miles in every direction, and mountain range after mountain range was visible – all the way out to the snow-covered San Gabriels. Nowadays, the air is only ever this clear around the Christmas holiday, when the freeway traffic is substantially reduced and a lot of factories shut down for the week. It got me thinking about how the future – say ten to twenty years hence – may be unrecognizable in both dramatic and mundane ways. For example, smog-free days may no longer be rare in LA, once the economy has shifted off fossil fuels. (I suspect the traffic will remain, unfortunately!)

Like LA’s typical skies, the energy future is murky in the short term – this year and 2010 – and I’ll leave those predictions to others. But the big trends – sustainability, carbon fighting, and technological breakthroughs – enable us to make better sense of the mid- and long-term. Therefore, In the spirit of the New Year, the incoming administration, and the tipping point that the world has come to about climate change and sustainability, here are ten things I believe are very likely to happen in the next ten years.

  1. Residential solar PV will be cost effective in most U.S. locations (via a combination of price reduction, new design thinking, much more efficient homes, and a carbon tax on fossil fuels).
  2. Home energy storage – via batteries, hydrogen reforming, fuel cells, or other technology – will be available and installed in 10% of new homes in California, for when the sun don’t shine.
  3. More than 10% of new homes in California will be zero-net energy.
  4. 50% of new residential construction in California will be zero-net energy “ready.”
  5. The current LEED standards will be considered obsolete.
  6. More than 20% of peak grid electricity will come from excess capacity from residential solar PV.
  7. There will be general consensus that efficiency and frugality alone will not provide enough CO2 mitigation to prevent major climate change – we will need a technological solution to actually reducing atmospheric CO2 or artificially cooling the earth.
  8. There will be a mid-priced carbon fiber, plugin hybrid passenger car in production that gets more than 75 miles per gallon. The company making it will be the “next GM.”
  9. 10% of the cars on the road will be powered by 100% renewable energy and will be essentially non-polluting.
  10. New technologies for capturing carbon from the atmosphere will be available, powered by excess solar capacity.

What do you think? Am I off base here? Too optimistic? Too pessimistic? Let me know in the comments. I’d love to hear your thoughts, challenges, and predictions for 2018.

Zero-net Energy Series Coming Up

Over the next few weeks, I will be publishing a series on “zero-net energy” residences (related to predictions 1-6 above). This area is about to explode. We already have all the technology, and some people have the experience, to build “zero-net energy ready” houses cost effectively. And although there’s currently a premium to get to zero-net energy, over the next ten years this premium will go to zero, and probably it will be cost-effective to get to positive-net energy – where the house is generating more energy than it needs! Talk about a world-changing situation – it really is possible to have energy too cheap to meter, but it’s going to come off our roofs, not from a nuclear plant or one of those imaginary fusion reactors.

The Answer Is Blowing In The Wind

Windmill and old houses in Schipluiden
Old Windmill (image by waterwin, CC 2.0 license)

The results of this study on solutions to global warming, air pollution, and energy security, by Stanford professor Mark Z. Jacobson, are somewhat surprising, given the drumbeat from many areas on both nuclear and biofuels as necessary for the salvation of the world.

Jacobson analyzes 12 energy sources for their beneficial impact on global warming, air pollution, and energy security – the ten electricity sources are solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology; the two liquid fuel options are corn-ethanol (E85) and cellulosic-E85.

An article in Science Daily summarizes one of Jacobson’s conclusions:

Jacobson said that while some people are under the impression that wind and wave power are too variable to provide steady amounts of electricity, his research group has already shown in previous research that by properly coordinating the energy output from wind farms in different locations, the potential problem with variability can be overcome and a steady supply of baseline power delivered to users.

As the bottom line in the study, Jacobson writes:

In summary, the use of wind, CSP, geothermal, tidal, solar, wave, and hydroelectric to provide electricity for BEVs [battery electric vehicles] and HFCVs [hydrogen fuel cell vehicles] result in the most benefit and least impact among the options considered. Coal-CCS and nuclear provide less benefit with greater negative impacts. The biofuel options provide no certain benefit and result in significant negative impacts. Because sufficient clean natural resources (e.g., wind, sunlight, hot water, ocean energy, gravitational energy) exists to power all energy for the world, the results here suggest that the diversion of attention to the less efficient or non-efficient options represents an opportunity cost that delays solutions to climate and air pollution health problems.

Note that the study ranks the various energy alternatives without regard to cost. That’s going to be controversial. Jacobson says:

Costs are not examined since policy decisions should be based on the ability of a technology to address a problem rather than costs (e.g., the U.S. Clean Air Act Amendments of 1970 prohibit the use of cost as a basis for determining regulations required to meet air pollution standards) and because costs of new technologies will change over time, particularly as they are used on a large scale.

In the real world, costs do have a major impact, especially given that we do not have a Clean Air Act regarding carbon today. This is why it’s so important that the price/kW of solar panels, for example, is dropping and will continue to drop.

In fact, when you leave cost out of the equation, is it surprising which energy sources came out on top? Let me know your thoughts.

Why Not Just Sell Them Here?

Some classic old GM cars - 1957 Cadillac tailfins
Some classic old GM cars (Image by thebi429, CC 2.0 license)

An article in today’s Seattle Times says that GM does know how to make good small cars, just not in the States:

Nearly three-fifths of General Motors’ employees make cars that are admired, popular and profitable. They just don’t work in the United States.

GM has a bigger presence and employs more people outside the United States than in it, and actually makes money selling cars around the globe. Its U.S. revenue has sunk 24 percent in the past three years, but in the rest of the world, GM can boast a 28 percent increase.

In Ford’s recent 2008 retrospective, they mention similar results – growth in Europe and Asia, production of lots of high mileage models outside the States, new fuel technologies, and so on:

  • “Ford of Europe is offering its customers ultra-low CO2 alternatives for selected car lines with the launch of a new range of Ford ECOnetic models at the 2007 Frankfurt Motor Show”
  • “Volume production of the new Ford Fiesta, the first of a generation of new global small Ford cars, started at the company’s Cologne plant in Germany”
  • “Ford ranks highest in overall new-vehicle sales satisfaction in Indonesia, according to the J.D. Power Asia Pacific 2008 Indonesia Sales Satisfaction Index (SSI) Study”

So, my simple question is – why don’t they just make those cars here? Or at least ship some of them here and sell them?

Integrated Design Makes “Smart Garage” Part of Utility’s Infrastructure

Garage of the Future
Garage of the Future (photo by Elsie esq., CC 2.0 Attribution License)

The Rocky Mountain Institute’s Andrew Demaria blogged a few weeks ago about “smart garages” that combine smart cars, a smart home network, and much smarter utilities into a synergistic system that optimizes power usage. After describing a “day in the life” of a smart garage:

Given the utility is experiencing a peak load period, it asks my house if it can use the spare power in the car’s battery and send that electricity elsewhere in the grid. What’s more, it will pay me for that power. Since I like being paid, I have already programmed the system to accept such requests.

The article then goes on to list the highlights of a recent Smart Garages conference organized by RMI. Attendees included representatives from auto manufacturers GM, Ford, and Nissan, utilities PG&E and Duke Energy, and consumer-focused companies Walmart and P&G.

Integrative design like smart garages requires all these organizations to work effectively together, based on official or de-facto standards. Although the cost of making such a transition will be hundreds of billions of dollars, the associated business opportunities, especially for those companies who can help tie all these disparate parts together, are commensurately huge.

Deutsche Bank Confirms Green Energy Creates Jobs and Economic Growth

home with free electricity
Available: Home with free electric (photo by Kainet, CC 2.0 Sharealike license)

From MIT’s Technology Review comes this column from Kevin Bullis, about a recent report from Deutsche Bank on the economic benefits of investing in new energy projects:

It argues that it’s possible to address challenges related to climate change, energy security, and the financial crisis at the same time by investing in four specific areas: energy-efficient buildings, electric power grids, renewable power, and public transportation. The report cites figures that suggest investing in these areas creates more jobs than investing in conventional energy sources because much of the old energy infrastructure is already in place. It says that “a $100 billion investment in energy and efficiency would result in 2 million new jobs, whereas a similar investment in old energy [such as coal or natural gas] would only create around 540,000 jobs.”

Of course, Obama has already pledged to do something along these lines, and the blogosphere (including me, here) has chimed in as well. But the imprimatur of Deutsche Bank adds some gravitas to the proposal.

If you want to read the report yourself, it’s here.

Trains? No, Planes and Automobiles (At Least In The U.S.)

Trains are not a solution to reducing the amount of driving Americans do. Saying “Europe has good trains, so we should too” is just a bad analogy. And we’re not even talking all the cultural, geographic, and infrastructural differences.

A Pretty Dutch Train
A pretty antique Dutch train (Photo by Gen Gibson)

Over on Will Blog for Food, John agitates for a much extended use of trains in the U.S. to partially address our current dependence on cars.

As an example, I spent three weeks in Holland a few years ago. I could get anywhere in the country by rail and back to Amsterdam the same day. But here’s the kicker: I never had to wait more than 5 minutes for a train to Amsterdam from any where in the country. Even in former communist countries like the Czech Republic you can get anywhere by rail and/or bus.

In the comments I took some issue with this idea, and thought I’d expand on those comments in a post.

Interestingly, Holland is about four times the size of… LOS ANGELES! It’s also one of the most densely populated countries in the world (LA is dense also).

So I’ll accept that you could build a kickass train system in the greater LA area, and it would be more or less the equivalent to the entire national train system in Holland. BTW, if you include Orange, San Bernadino, and Ventura Counties in with LA, you get a region larger than the entire Netherlands. And that doesn’t include five of the largest cities in California (San Francisco, San Diego, Sacramento, and San Jose), much less even the largest cities in the neighboring states.

My point is that saying “Europe has good trains, so we should too” is just a bad analogy. And we’re not even talking all the cultural, geographic, and infrastructural differences. For example, the fact that a huge proportion of the population lives in sprawling suburbs mitigates strongly against effective public transit. In places where the density is sufficient, public transit has worked in the U.S. – New York, Boston, San Francisco. It’s arguable that LA is sufficiently dense – but it might not be, with the sprawl down to Long Beach, Orange County, and San Bernadino County.

My feeling is that cars are here to stay in the U.S. (and obtw, in China and India too, at a very rapid growth rate). Instead of fantasizing about trains in the U.S., we need to figure out how to build cars that don’t pollute, use sustainable energy sources, and are recyclable. Interestingly, one reason our cars aren’t built from carbon fiber today? Not recyclable (yet). On the other hand, 90% of the materials in a regular Detroit car are recyclable and recycled today. In fact, I just read today that Subaru’s plant in Indiana is “zero landfill” – they actually don’t throw anything away!

What do you think about trains in the U.S.? Do you think they’d be a good replacement for cars? On what terms – how would you go about it? Let me know in the comments – I’d love to hear your thoughts.

Expanding Options In Solar Energy and Electric Cars

Mission Peak (L), Mount Allison (C) and Monume...
Mission Peak in Fremont, CA. Image via Wikipedia

A roundup of a few stories that came out this week that I found particularly interesting.

  • Solyndra, a startup in Fremont, CA (just down the street from my office), is using a new form factor for thin film solar cells:

    Unlike conventional solar panels, which are made of flat solar cells, the new panels comprise rows of cylindrical solar cells made of a thin film of semiconductor material. The material is made of copper, indium, gallium, and selenium. To make the cells, the company deposits the semiconductor material on a glass tube. That’s then encapsulated within another glass tube with electrical connections that resemble those on fluorescent lightbulbs. The new shape allows the system to absorb more light over the course of a day than conventional solar panels do, and therefore generate more power.

    Not only do they not need trackers, but because they are mounted with space between each tube, they aren’t susceptible to wind and they can collect light reflected off the building’s roof and ambient light coming in obliquely.

    What I like about this story is that it shows that there’s still a lot more innovation to be done in all areas of alternative energy design – yesterday I saw another report about a new fuel cell membrane made of a cheap material instead of platinum, and there’s practically a new wind energy device every week. They’re not all going to be winners, but it’s the kind of design ferment that’s going to lead to big cost and practicality improvements in every area.

  • The EPA provides an interactive analysis (using Google Earth) of marginal and contaminated land that could be used for renewable energy farms – wind and/or solar:

    According to the EPA, many lands tracked by the agency, such as large Superfund sites, and mining sites offer thousands of acres of land, and may be situated in areas where the presence of wind and solar structures are less likely to be met with aesthetic, and therefore political, opposition.

    One stumbling block for a massive transition to solar power in the U.S. has been the land use question. I’m not saying we want to build our power on contaminated lands, but it’s interesting to see this as an option.

    Via CleanTechnica.com

  • Renault commits to electric vehicles. Saying that:

    “EVs are a necessity because hybrids cannot deliver the level of gasoline use and emissions reductions that governments and customers are demanding of automakers”

    Renault unveiled two zero-emission concept cars at the Paris autoshow Mondiale de l’Automobile, both of which are pure electric. The cars have a range of 160-200 kilometers (95-120 miles) and are designed for day-to-day use and short weekend trips, “not vacations” as Renault admits.

    Renault is committing to EVs because they believe that’s the only they’ll be able to deliver the gasoline economy and emissions reductions being demanded by both the market and governments.

These stories caught my eye as not just “more of the same” this week. What green energy stories got your interest up recently?

Enhanced by Zemanta

What’s My Car’s CO2 Footprint In Units of Newly Planted Trees?

Nurse log, spruce or fir, central Colorado, wi...
Image via Wikipedia

Did you ever wonder what reducing carbon dioxide (CO2) emissions by 1 million metric tons means in everyday terms? The EPA’s Greenhouse Gas Equivalencies Calculator can help you understand just that.

It can be difficult to visualize what a “metric ton of carbon dioxide” really is. This calculator will translate rather difficult to understand statements into more commonplace terms, such as “is
equivalent to avoiding the carbon dioxide emissions of X number of cars annually.”

For example, one passenger car emits about 5.5 tons of CO2 in a year, and that’s equivalent to the CO2 produced through the energy use of about 1/2 a home in a year, or the CO2 sequestered by 141 tree seedlings grown for ten years. That’s a lot of trees!

If you’re interested in more in-depth calculations on how forests take up CO2, this paper (PDF) by J. Doyne Farmer, a professor at the Santa Fe Institute, discusses the Forest Guardians, now the Wild Earth Guardians, CO2 carbon offset calculation.

Enhanced by Zemanta

Carbon Fiber May Not Be Necessary

Inlay with nacre tesserae; Bagdad pavilion; th...Image via Wikipedia

Looked at one way, carbon fiber composites are just our simplistic human analog of natural nano-featured composites like those that make up mussel and abalone shells. Mollusks use a “digital” process for creating their shells – a digital process controlled by a computer running DNA as its code. What if we could make composites like those little molluscs – stronger and more resilient than some random fibers jammed into some plastic?

Now researchers at the Swiss Federal Institute of Technology in Zurich, following on work done at Michigan and MIT, have created a new bio-inspired material that combines the strength of ceramics with the stretchiness of polymers. Consisting of ceramic platelets in a polymer matrix, like bricks in mortar, the material is both light and strong – approximately four times as strong as steel.

In designing the material, the researchers carefully studied the mechanical structure of nacre, the shiny layer on the inside of seashells, and tried to improve it. Nacre has platelets made of calcium carbonate arranged in layers inside a protein-based polymer. “There’s something very special about the size of these platelets,” Studart says. “Nacre uses specific platelet length and thickness to achieve the high strength and [stretchability] that you see in metals.”

This type of biomimicry is the next major frontier of materials science. Sea shell, or nacre, has long been a target for researchers in the emerging field of biomimetics – literally “copying life” – along with artificial photosynthesis for gathering sunlight as energy, multiple other materials such as spider silk, and a whole host of behaviors and capabilities that the natural world has evolved over hundreds of millions, or even billions, of years.

The combination of nature’s techniques, such as creating nacre with a digital process, and Man’s inventiveness is ushering an era of materials with amazing properties – just in time to address some of the most significant problems we’re facing, including global climate change and sustainable energy.

Enhanced by Zemanta

Execs See Profits and Higher Quality Through Green Manufacturing

U.S.Image via Wikipedia

In a recent survey by Eye For Transport, supply chain executives across a range of industries agreed not only that “greening” the manufacturing process was becoming more and more cost effective, but that they expected increased profits and better quality as a result.

A whopping 95% of the 3,000 North American executives polled agree that green manufacturing will continue to expand, citing increased profits (66%) and improved efficiency and product quality (43%) as key drivers.

43% is not even a majority, but it’s a sign the tide of perception is turning that going green is not a tax, but can result in both bottom line and top line benefits to companies.

Other interesting numbers from the survey:

  • 77% of manufacturing executives believe energy prices will rise significantly next year, requiring them to improve energy efficiency
  • 66% believe there are markets for more expensive and greener products in their industries

(Via Sustainable Life Media)

Enhanced by Zemanta