How Big Is The Project, Really?

Encina
Toledo tree (image by J. Lozano, CC 2.0 licensed)

According to John Lushetsky, program manager of the U.S., it’s a very big project:

To go from the 1 gigawatt of generation capacity that we have now [in the United States] to the 170 to 200 gigawatts called for by 2030 amounts to a 26 percent compounded annual growth rate over the next 20 years. That’s a higher sustained growth rate than any industry has ever been asked to do before

This was at a presentation Lushetsky gave in Toledo Ohio two weeks ago, as part of a day-long conference on “Empowering Solar Energy in Ohio.”

That 26% growth rate is very high, but there is hope. The semiconductor and IT industries had a similar growth rate over a similar period. In fact, measured using a different metric – price/performance – the semiconductor industry actually grew a lot faster. That’s one reason I like to focus on [intlink id=”189″ type=”post”]price/performance with solar energy[/intlink] – if that metric continually drops, then it’s feasible for alternative energy sources to replace conventional sources. Just as in the IT industry, [intlink id=”66″ type=”post”]the driver for growth in solar is going to be cost parity[/intlink]. That’s why the Google Foundation’s program, for example, is RE < C (“renewable energy costs less than coal“) instead of something like “200 GW by 2030”.

Combining dropping solar power costs with increasing energy efficiency gets you to the goal fastest, of course. Getting efficient is already cheaper than buying energy in a lot of cases. (We need a whole other set of posts to discuss the barriers to getting efficient – it’s cheap, cost-effective, and profitable but still challenging.)

DoE Secretary Steven Chu: We Need Nobel-Level Breakthroughs

Secretary of Energy Steven Chu
Secretary of Energy Steven Chu

Yesterday the New York Times published an interview (including some of the original audio) with our new Energy Secretary, Steven Chu. Among other comments, he said that to address the climate emergency, we need “Nobel-level breakthroughs” in several key areas – batteries, biofuels, and solar photovoltaics.” As an illustration, he pointed out:

The photovoltaics we have today, … without subsidy, and without even the additional cost of storage, it’s about a factor of five higher than electricity generation by gas or coal. Suppose someone comes along and invents a way of getting … solar photovoltaics at one fifth the cost, so you don’t even think about subsidies anymore. You just slap it everywhere… That, in my opinion, would take something, which I would say, is a bit of a breakthrough.”

There’s no arguing with that idea – if solar PV were five times cheaper, no one would need complicated “payback period” models to justify installing it. (Luckily, we do have those models, and so some people are taking the plunge.)

Of course, this is just the story of how technologies advance – it’s very familiar from the rise of semiconductors. A technology needs an ever-expanding “feedstock” of innovations, discoveries, and breakthroughs to grow at an exponential rate. In semiconductors, the history of technologies such as FET, MOS, CMOS, new clean room techniques, different types of lithography, and many other innovations each offered ever decreasing feature size and lower cost. This parade of innovations combined to ensure that just when one technology was reaching its limit of compactness, another newer and more efficient technology would be there to take its place. When the new one ran out of steam the cycle would repeat. (And several of those innovations resulted in Nobels.)

One example of the “old thinking” on PV is the projections about its availability and cost. Many of these projections assume a linear improvement in price/performance. To help save the world, the price/performance of solar electricity and batteries and efficiency and fuel cells must come down faster than the typical, linear projections – just as it did for semiconductors.

Luckily, despite a current dip in investment and research levels due to the economy, this is happening in the solar photovoltaics domain. [intlink id=”210″ type=”post”]New[/intlink] [intlink id=”218″ type=”post”]discoveries[/intlink], new manufacturing methods, and [intlink id=”66″ type=”post”]new thinking[/intlink] will continue to drive the price down. With luck, Chu’s support from his bully pulpit in the DoE can accelerate this process.

Hat tip to Watthead for turning me on to this interview.

CalTech Chemist Puts 10-year Target on “Competitive Solar Energy”

On 140 acres of unused land on Nellis Air Forc...Image via Wikipedia

Harry Gray, the Arnold O. Beckman Professor of Chemistry and Founding Director of the Beckman Institute at CalTech, spoke at the American Chemical Society annual meeting in April of this year.

Expert Foresees 10 More Years Of Research & Development To Make Solar Energy Competitive

Gray emphasized this point: “The pressure is on chemists to make hydrogen from something other than natural gas or coal. We’ve got to start making it from sunlight and water.”

Enhanced by Zemanta

Is this solar energy analysis is too simplistic?

According to this analysis from Clean Edge, (which I saw originally in the San Jose Mercury News, Solar energy cost may rival other forms soon, study says – SiliconValley.com):

Solar energy will cost the same as power produced by coal, natural gas and nuclear plants in about a decade, a report released Tuesday suggests. By then, the price parity could propel solar adoption so that it accounts for 10 percent of U.S. electricity generation by 2025

If you listen to this kind of thinking, solar energy (which is defined as what, by the way?) is still far more expensive than other kinds. But solar energy, even today, has a finite payback time – if I put solar collectors on my roof, for example, eventually they will pay for themselves.

So that’s one way it’s wrong.

Secondly, the study assumes that conventional energy prices will go up by 3% per year. That could be a slight underestimate. Didn’t we just experience a three month period where gas prices nearly doubled? (That’s 100%, folks!).

I can’t make any argument about the assumption that solar energy prices will come down 18% per year. That’s a lot, by one metric, but we’ve certainly seen large and faster price drops in high tech in the past. Even the iPhone last month, which dropped in price by almost 50% in less than a year. Sure, that was partly through some magic AT&T financial pixie dust, but to the user, it’s a clear 50% price cut. There’s no reason similar magic pixie dust, whether from the government or from the utilities themselves, won’t contribute to market price declines.

The claim that solar currently accounts for less than 1/10th of a percent of the U.S. energy supply today is fine. But the assumption that it will still be less than 1 percent in 2015 (seven years from now) is curious. If we start at .1 percent, and double our solar usage every year, we end up at 128 times as much – 12.8% of today’s total. This is the amazing power of Ray Kurzweil’s “Law of Accelerating Returns.” Even if it takes two years for each doubling, we’re still up a factor of 32x in seven years. That means 3.2% today’s usage. Our total energy usage may also go up (although there are very good reasons to think it may not go up much and and will be starting a downward trajectory), but for a 32x increase in solar supply to translate to 1% of our total energy use, total energy use would have to double. Not too likely in the U.S., where population growth has stopped, and SUVs are starting their long decline.

Finally, there’s good reason to believe that solar energy will actually have a much larger share of U.S. energy usage, due to the power of “negawatts” (as explained brilliantly by Amory Lovins in this series of talks at Stanford in 2007), in which efficiency turns out to be the most cost effective way to power industry and create profits. Oh, and by the way, it significantly reduces our energy usage, by as much as a factor of five to seven!

The article combines a couple of types of fallacious thinking – that technological progress is linear, for example, rather than geometric, and that other factors, such as the desire to reduce greenhouse gases or realizing the benefits of negawatts throughout the economy, don’t have an additional accelerating effect on technology changes.