Expanding Options In Solar Energy and Electric Cars

Mission Peak (L), Mount Allison (C) and Monume...
Mission Peak in Fremont, CA. Image via Wikipedia

A roundup of a few stories that came out this week that I found particularly interesting.

  • Solyndra, a startup in Fremont, CA (just down the street from my office), is using a new form factor for thin film solar cells:

    Unlike conventional solar panels, which are made of flat solar cells, the new panels comprise rows of cylindrical solar cells made of a thin film of semiconductor material. The material is made of copper, indium, gallium, and selenium. To make the cells, the company deposits the semiconductor material on a glass tube. That’s then encapsulated within another glass tube with electrical connections that resemble those on fluorescent lightbulbs. The new shape allows the system to absorb more light over the course of a day than conventional solar panels do, and therefore generate more power.

    Not only do they not need trackers, but because they are mounted with space between each tube, they aren’t susceptible to wind and they can collect light reflected off the building’s roof and ambient light coming in obliquely.

    What I like about this story is that it shows that there’s still a lot more innovation to be done in all areas of alternative energy design – yesterday I saw another report about a new fuel cell membrane made of a cheap material instead of platinum, and there’s practically a new wind energy device every week. They’re not all going to be winners, but it’s the kind of design ferment that’s going to lead to big cost and practicality improvements in every area.

  • The EPA provides an interactive analysis (using Google Earth) of marginal and contaminated land that could be used for renewable energy farms – wind and/or solar:

    According to the EPA, many lands tracked by the agency, such as large Superfund sites, and mining sites offer thousands of acres of land, and may be situated in areas where the presence of wind and solar structures are less likely to be met with aesthetic, and therefore political, opposition.

    One stumbling block for a massive transition to solar power in the U.S. has been the land use question. I’m not saying we want to build our power on contaminated lands, but it’s interesting to see this as an option.

    Via CleanTechnica.com

  • Renault commits to electric vehicles. Saying that:

    “EVs are a necessity because hybrids cannot deliver the level of gasoline use and emissions reductions that governments and customers are demanding of automakers”

    Renault unveiled two zero-emission concept cars at the Paris autoshow Mondiale de l’Automobile, both of which are pure electric. The cars have a range of 160-200 kilometers (95-120 miles) and are designed for day-to-day use and short weekend trips, “not vacations” as Renault admits.

    Renault is committing to EVs because they believe that’s the only they’ll be able to deliver the gasoline economy and emissions reductions being demanded by both the market and governments.

These stories caught my eye as not just “more of the same” this week. What green energy stories got your interest up recently?

Enhanced by Zemanta

Is this solar energy analysis is too simplistic?

According to this analysis from Clean Edge, (which I saw originally in the San Jose Mercury News, Solar energy cost may rival other forms soon, study says – SiliconValley.com):

Solar energy will cost the same as power produced by coal, natural gas and nuclear plants in about a decade, a report released Tuesday suggests. By then, the price parity could propel solar adoption so that it accounts for 10 percent of U.S. electricity generation by 2025

If you listen to this kind of thinking, solar energy (which is defined as what, by the way?) is still far more expensive than other kinds. But solar energy, even today, has a finite payback time – if I put solar collectors on my roof, for example, eventually they will pay for themselves.

So that’s one way it’s wrong.

Secondly, the study assumes that conventional energy prices will go up by 3% per year. That could be a slight underestimate. Didn’t we just experience a three month period where gas prices nearly doubled? (That’s 100%, folks!).

I can’t make any argument about the assumption that solar energy prices will come down 18% per year. That’s a lot, by one metric, but we’ve certainly seen large and faster price drops in high tech in the past. Even the iPhone last month, which dropped in price by almost 50% in less than a year. Sure, that was partly through some magic AT&T financial pixie dust, but to the user, it’s a clear 50% price cut. There’s no reason similar magic pixie dust, whether from the government or from the utilities themselves, won’t contribute to market price declines.

The claim that solar currently accounts for less than 1/10th of a percent of the U.S. energy supply today is fine. But the assumption that it will still be less than 1 percent in 2015 (seven years from now) is curious. If we start at .1 percent, and double our solar usage every year, we end up at 128 times as much – 12.8% of today’s total. This is the amazing power of Ray Kurzweil’s “Law of Accelerating Returns.” Even if it takes two years for each doubling, we’re still up a factor of 32x in seven years. That means 3.2% today’s usage. Our total energy usage may also go up (although there are very good reasons to think it may not go up much and and will be starting a downward trajectory), but for a 32x increase in solar supply to translate to 1% of our total energy use, total energy use would have to double. Not too likely in the U.S., where population growth has stopped, and SUVs are starting their long decline.

Finally, there’s good reason to believe that solar energy will actually have a much larger share of U.S. energy usage, due to the power of “negawatts” (as explained brilliantly by Amory Lovins in this series of talks at Stanford in 2007), in which efficiency turns out to be the most cost effective way to power industry and create profits. Oh, and by the way, it significantly reduces our energy usage, by as much as a factor of five to seven!

The article combines a couple of types of fallacious thinking – that technological progress is linear, for example, rather than geometric, and that other factors, such as the desire to reduce greenhouse gases or realizing the benefits of negawatts throughout the economy, don’t have an additional accelerating effect on technology changes.