Getting (A Lot) More Done Per CO2 Molecule

CIA World Factbook 2007 figures of total nomin...Image via Wikipedia

According to a McKinsey Global Institute report released at the end of July, the world economy will have to improve its “carbon productivity” – the amount of gross domestic product (GDP) created per unit of CO2 – by a factor of ten by 2050 to stop global climate change in its tracks while continuing to enable a healthy level of growth. The report predicts that the cost of this transformation will amount to 0.6% – 1.3% of global GDP by 2030. They note that this compares favorably to the cost of insurance born by economies, which amounts to more than 3% of GDP.

Helpfully, the report also suggests the most appealing opportunities for achieving this ten-fold improvement in productivity (referring to MGI’s February paper on the global cost curve):

It will be essential to identify and capture the lowest-cost abatement opportunities in the economy. Analysis of McKinsey’s global cost curve, a map of the world’s abatement opportunities ranked from lowest-cost to highest-cost options, identifies five areas for action to drive the necessary microeconomic changes: capturing available opportunities to increase energy efficiency in a cost-effective way; decarbonizing energy sources; accelerating the development and deployment of new low-carbon technologies; changing the behaviors of businesses and consumers; and preserving and expanding the world’s carbon sinks, most notably its forests.

Productivity (“regular productivity”) increased by a factor of ten over the course of the Industrial Revolution – a period of 120 years. McKinsey’s call to action calls for a similar increase, but over a period one-third as long. But they warn that, if this goal is not achieved, we will all be facing lives of significant privation.

Enhanced by Zemanta

Some Experts Say “Moore’s Law Does Not Apply To Solar PV” – Kurzweil (and Page) Disagree

Exponential growth of computing. 20th to 21st ...Image via Wikipedia

In his call to action two weeks ago, Al Gore compared the future development of solar electricity sources to the development of the semiconductor industry. His implication was that Moore’s Law, which reliably predicted that the price/performance of semiconductors doubled every 18 months, would also apply to photovoltaics.

ComputerWorld, in an article two weeks ago, assesses this comparison as flawed. (As did Harry Gray of Cal Tech, as I reported earlier today.)

“But does Moore’s Law also apply to the solar energy industry? The short answer is no. As with microprocessor technology, the price and performance of photovoltaic solar electric cell is improving. And Gore can clearly point to price drops of solar cells to make his case. But the efficiency of those solar cells — their ability to convert sunlight into electric energy — is not increasing as rapidly.”

The article goes on to suggest reasons that Moore’s Law might not apply – there’s a lot more to solar panels than just silicon, while the price/kilowatt has been coming down, it doesn’t seem to be coming down fast, etc.

However, there are other opinions. The best explainer and interpreter of Moore’s Law, and exponential growth in general, is Ray Kurzweil. His Law of Accelerating Returns is essentially a generalization of Moore’s Law that applies to all information technologies. (Learn a lot more about accelerating returns and exponential growth in his recent book, The Singularity Is Near: When Humans Transcend Biology.)

A panel convened by the National Association of Engineers, including Kurzweil and Larry Page of Google, concluded that:

“We are not that far away from a tipping point where energy from solar will be [economically] competitive with fossil fuels.”

Kurzweil characterizes solar energy technologies as “information technologies,” especially as nanotech gets into the picture.

“We also see an exponential progression in the use of solar energy,” he said. “It is doubling now every two years. Doubling every two years means multiplying by 1,000 in 20 years. At that rate we’ll meet 100 percent of our energy needs in 20 years.”

I think we may be at one of the most interesting points in human history, when technology is changing so fast around us that in twenty years the world will almost literally be unrecognizable compared to today. (One of the side effects of the Law of Accelerating Returns is that the world changes completely on a regular basis – it just gets faster and faster!)

Enhanced by Zemanta

Walmart’s Solar Roofs = A Manhattan of PVs

Artists conception - Manhattan covered with solar cells
Artist's conception - Manhattan covered with solar cells. If Walmart covers all its roofs with solar cells, they'll cover an area equal to Manhattan

The New York Times has a story today about the big box stores rushing to get solar cells on their roofs before a Federal tax break expires at the end of December. The article’s analysis is that they are primarily doing it for PR purposes, since PV-based energy is still a lot more expensive than conventional. The benefits of being able to say they are green are compelling. But the companies put a slightly different spin on it:

But retailers believe that they can achieve economies of scale. With coal and electricity prices rising, they are also betting that solar power will become more competitive, especially if new policies addressing global warming limit the emissions from coal plants.

Retailers, hoping to create a bigger market and positioning themselves at the forefront of a national shift toward renewable energy, are encouraging one another to join the bandwagon.

The current rule of thumb is that the U.S. gets about 0.1% of its electricity today from solar energy, doubling about every year (among other places, mentioned in this interview with Ray Kurzweil on NPR’s Science Friday).

I wonder how those numbers will change after this rush by the retailers?

Efficiency profitable for energy-independent Denmark

Thomas Friedman’s OpEd on Sunday describes how Denmark has achieved energy independence, and illustrates the numerous benefits for the country, including a very low unemployment rate and a large new export market.

When the 1973 oil shock hit, Denmark got 99 percent of its energy from the Middle East. Now they get zero. The country has combined massive energy efficiency programs, such as using waste heat from power plants to heat homes (known as “cogeneration”), with alternative energy sources like windmills (20% of their energy comes from the wind now), effective use of their own petroleum resources in the North Sea, and incentives for lowering energy use via high taxes on gasoline.

As a result, Danes enjoy one of the highest standards of living in the world, an extremely low unemployment rate, and a healthy export sector in alternative energy products.

Because it was smart taxes and incentives that spurred Danish energy companies to innovate, Ditlev Engel, the president of Vestas — Denmark’s and the world’s biggest wind turbine company — told me that he simply can’t understand how the U.S. Congress could have just failed to extend the production tax credits for wind development in America.

Engel suggests why this might concern us here in the United States.

“We’ve had 35 new competitors coming out of China in the last 18 months, and not one out of the U.S.”

If Denmark has been able to achieve 100% energy independence, at net benefit to their society economically, what does that say about America’s chances? Denmark has some advantages – it’s much smaller than the U.S., it has new oilfields in the North Sea – but we have advantages as well – our Southwest is much better for solar than anywhere in Denmark, we have whole states available for wind power, we have comparatively high rates of energy inefficiency that represent massive “negawatts.” Amory Lovins of Rocky Mountain Institute has outlined a set of steps for getting the U.S. off oil by 2025 – Winning The Oil End Game – that provides one possible, well-researched scenario for a profitable transition.

In the 35 years since the ’73 oil shock, Denmark has accomplished something remarkable. Now we in the U.S. need to set ourselves a similar goal. Using new technologies, such as the fuel cell breakthroughs I mentioned last week (here and here), we should be able to get there a lot faster than 35 years.

Clean and renewable energy also profitable for individuals who want jobs

A report from Worldwatch Institute details the way that traditional high carbon industries, such as coal, are shedding jobs while renewable energy and energy efficiency industries are adding jobs.

An estimated 2.3 million people worldwide currently work either directly in renewables or indirectly in supplier industries. The solar thermal industry employs at least 624,000 people, the wind power industry 300,000, and the solar PV industry 170,000. More than 1 million people work in the biomass and biofuels sector, while small-scale hydropower employs 39,000 individuals and geothermal employs 25,000.

It’s not just those people and organizations applying clean and renewable energy who are profiting, but also those doing the work.