Fuel Cell Innovation Update

The week I started this blog in August 2008, there were [intlink id=”5″ type=”post” target=”_blank”]three major fuel-cell related discoveries[/intlink] making the rounds in the science magazines. Since then, there have been [intlink id=”7″ type=”post” target=”_blank”]new announcements every week[/intlink] of an [intlink id=”229″ type=”post” target=”_blank”]improved catalyst or membrane or electrolyte[/intlink]. As these discoveries mature into real products and enter the market, the option of using fuel cells for energy storage, both for homes as well as vehicles, will become more and more cost-effective.

Energy storage is potentially a big part of the zero-net energy house picture, and is certainly critical for the hydrogen automobile transition. I thought I’d highlight a few recent discoveries and advances in the world of fuel cells, the “energy storage of the future.”

  • Cheaper Fuel Cells with nanotubes instead of platinum:

    “Fuel cells haven’t been commercialized for larger-scale applications because platinum is too expensive,” says Liming Dai, a materials-engineering professor at the University of Dayton, in Ohio, who led the work. “For electrodes, you need a cheaper material that still has a high performance.”

  • A new catalyst could make ethanol fuel cells practical for portable gadgets

    The new catalyst, developed by researchers at Brookhaven National Laboratory, breaks the carbon bonds without high voltages, efficiently releasing enough electrons to produce electrical currents 100 times higher than those produced with other catalysts.

  • A new fuel cell uses a cheap nickel catalyst

    Now researchers in China have developed a fuel cell that uses a new membrane material to operate in alkaline conditions, eliminating the need for an expensive catalyst. The power output of the new prototype, which uses nickel as a catalyst, is still relatively low, but it provides a first demonstration of a potentially much less expensive fuel cell.

  • A novel low-temperature electrolyte could make solid-oxide fuel cells more practical

    Solid-oxide fuel cells are promising for next-generation power plants because they are more efficient than conventional generators, such as steam turbines, and they can use a greater variety of fuels than other fuel cells. They can generate electricity with gasoline, diesel, natural gas, and hydrogen, among other fuels. But the high temperatures required for efficient operation make solid-oxide fuel cells expensive and limit their applications.

Home-generated energy is sustainable, non-polluting, and carbon-free. As the price of energy generation continues to drop, it’s possible to imagine [intlink id=”329″ type=”post” target=”_blank”]the nation’s homes becoming the nation’s power plant[/intlink]. But that can’t happen until we have effective home-based energy storage.

The Answer Is Blowing In The Wind

Windmill and old houses in Schipluiden
Old Windmill (image by waterwin, CC 2.0 license)

The results of this study on solutions to global warming, air pollution, and energy security, by Stanford professor Mark Z. Jacobson, are somewhat surprising, given the drumbeat from many areas on both nuclear and biofuels as necessary for the salvation of the world.

Jacobson analyzes 12 energy sources for their beneficial impact on global warming, air pollution, and energy security – the ten electricity sources are solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology; the two liquid fuel options are corn-ethanol (E85) and cellulosic-E85.

An article in Science Daily summarizes one of Jacobson’s conclusions:

Jacobson said that while some people are under the impression that wind and wave power are too variable to provide steady amounts of electricity, his research group has already shown in previous research that by properly coordinating the energy output from wind farms in different locations, the potential problem with variability can be overcome and a steady supply of baseline power delivered to users.

As the bottom line in the study, Jacobson writes:

In summary, the use of wind, CSP, geothermal, tidal, solar, wave, and hydroelectric to provide electricity for BEVs [battery electric vehicles] and HFCVs [hydrogen fuel cell vehicles] result in the most benefit and least impact among the options considered. Coal-CCS and nuclear provide less benefit with greater negative impacts. The biofuel options provide no certain benefit and result in significant negative impacts. Because sufficient clean natural resources (e.g., wind, sunlight, hot water, ocean energy, gravitational energy) exists to power all energy for the world, the results here suggest that the diversion of attention to the less efficient or non-efficient options represents an opportunity cost that delays solutions to climate and air pollution health problems.

Note that the study ranks the various energy alternatives without regard to cost. That’s going to be controversial. Jacobson says:

Costs are not examined since policy decisions should be based on the ability of a technology to address a problem rather than costs (e.g., the U.S. Clean Air Act Amendments of 1970 prohibit the use of cost as a basis for determining regulations required to meet air pollution standards) and because costs of new technologies will change over time, particularly as they are used on a large scale.

In the real world, costs do have a major impact, especially given that we do not have a Clean Air Act regarding carbon today. This is why it’s so important that the price/kW of solar panels, for example, is dropping and will continue to drop.

In fact, when you leave cost out of the equation, is it surprising which energy sources came out on top? Let me know your thoughts.

A Note From The Fuel Cell Research Front

Methanol fuel cell.
Methanol fuel cell. Image via Wikipedia

I plan to do an in-depth post or series on fuel cells soon, because there is so much breakthrough work going on in this research area. Fuel cells are interesting on so many fronts – for example, they’re probably the best way to use the hydrogen generated by Daniel Nocera’s new hydrogen splitting method, announced in mid-August. And just since August, researchers have announced big improvements or cost reductions in every component of the fuel cell – membrane, catalyst, and electrodes.

This latest story from Technology Review covers a new membrane improvement for methanol fuel cells. As the article points out, methanol fuel cells have some key benefits compared to hydrogen cells, in particular that methanol is a liquid at normal temperatures, but they also have technical challenges. Paula Hammond and her team are addressing one of these:

In her lab at MIT, chemical-engineering professor Paula Hammond pinches a sliver of what looks like thick Saran wrap between tweezers. Though it appears un­remarkable, this polymer membrane can significantly increase the power output of a methanol fuel cell, which could make that technology suitable as a lighter, longer-­lasting, and more environmentally friendly alternative to batteries in consumer electronics such as cell phones and laptops.

Do you have questions about fuel cells that you’d like me to find answers to as I research my upcoming series? Let me know in the comments.

Enhanced by Zemanta

More amazing energy storage news

I posted yesterday about three new breakthrough discoveries related to energy storage from the last week, but they keep on coming – here’s another:

Some researchers at Melbourne’s Monash University in Australia have made yet another breakthrough related to making fuel cells more feasible for general purpose use. Their breakthrough is related to a new cathode design, made with a much cheaper material than the typical platinum. The result is an order of magnitude reduction in the materials cost for the fuel cell.

Professor Maria Forsythe and her colleagues used a conducting polymer (a special plastic that conducts electricity) called poly(3,4-ethlenedioxythiphene), or PEDOT for the cathode, instead of platinum. The amount of platinum required for a passenger car fuel cell costs $3500 to $4000, and accounts for the major part of the cost of the fuel cell. Using PEDOT for the cathode reduces the cost to a few hundred dollars.

Forsyth says the cathode could also be used in zinc air batteries, which are under development for storing energy in cars.

The energy game is just getting started

It’s been a great week for energy! In separate announcements, scientists at MIT, a university in Spain, and at an energy startup in Texas made some amazing claims that to me indicate that what we think we know about alternative energy and energy efficiency, we don’t know.

At MIT, Dr. Daniel Nocera announced a new, much lower energy process for separating water into hydrogen and oxygen, using new catalysts developed in his labs. This discovery, if it can be successfully commercialized, represents perhaps the best currently known way to store solar energy for when the sun’s not shining. The idea is that when the sun is shining, electricity generated by solar photovoltaic cells would be used to generate hydrogen, which would then be used later in a fuel cell to generate electricity when it’s needed, such as to drive your electric car, or to heat the water for your shower in the morning.

Using sunlight to split water, storing solar energy in the form of hydrogen, hasn’t been practical because the reaction required too much energy, and suitable catalysts were too expensive or used extremely rare materials. Nocera’s catalyst clears the way for cheap and abundant water-splitting technologies.

In an unrelated story, scientists at Universidad Complutense de Madrid in Spain announced a new electrolyte for use in solid oxide fuel cells which could significantly improve their practicality. Until now,

the high temperatures required for efficient operation make solid-oxide fuel cells expensive and limit their applications. The low-temperature electrolyte reported by the Spanish researchers could be a “tremendous improvement” for solid-oxide fuel cells, says Eric Wachsman, director of the Florida Institute for Sustainable Energy, at the University of Florida.

Finally, EEStor, a hugely-funded battery startup in Texas announced a major milestone in their efforts to create a new battery technology that “will have more than three times the energy density of the top lithium-ion batteries today and … the ability to recharge in less than five minutes.” There is a lot of skepticism about EEStor’s claims in the scientific community, in part because they have not yet demonstrated their technology to outside reviewers. But if their technology is real, and a number of top-line venture capital firms are betting that it is, the accepted wisdom about batteries will have a sea change. There’s even a car company that’s committed to using the new battery in the near term:

Toronto-based ZENN Motor, an EEStor investor and customer, says that it’s developing an EESU-powered car with a top speed of 80 miles per hour and a 250-mile range. It hopes to launch the vehicle, which the company says will be inexpensive, in the fall of 2009.

Hopefully we’ll be hearing more concrete information soon. Dick Weir, founder and president of EEStor, says they’ll be coming out with more information about their progress and technology on a “more rapid basis.”

That makes three major announcements about energy storage in one week, any one of which, if it’s successfully commercialized, changes the economics and practicality of alternative energy. Given that alternative energy and energy efficiency are already cost-effective and “ready for prime time,” these changes could literally deliver the very low-cost energy that nuclear power advocates promised 50 years ago. But this time it will be truly clean.