How Big Is The Project, Really?

Toledo tree (image by J. Lozano, CC 2.0 licensed)

According to John Lushetsky, program manager of the U.S., it’s a very big project:

To go from the 1 gigawatt of generation capacity that we have now [in the United States] to the 170 to 200 gigawatts called for by 2030 amounts to a 26 percent compounded annual growth rate over the next 20 years. That’s a higher sustained growth rate than any industry has ever been asked to do before

This was at a presentation Lushetsky gave in Toledo Ohio two weeks ago, as part of a day-long conference on “Empowering Solar Energy in Ohio.”

That 26% growth rate is very high, but there is hope. The semiconductor and IT industries had a similar growth rate over a similar period. In fact, measured using a different metric – price/performance – the semiconductor industry actually grew a lot faster. That’s one reason I like to focus on [intlink id=”189″ type=”post”]price/performance with solar energy[/intlink] – if that metric continually drops, then it’s feasible for alternative energy sources to replace conventional sources. Just as in the IT industry, [intlink id=”66″ type=”post”]the driver for growth in solar is going to be cost parity[/intlink]. That’s why the Google Foundation’s program, for example, is RE < C (“renewable energy costs less than coal“) instead of something like “200 GW by 2030”.

Combining dropping solar power costs with increasing energy efficiency gets you to the goal fastest, of course. Getting efficient is already cheaper than buying energy in a lot of cases. (We need a whole other set of posts to discuss the barriers to getting efficient – it’s cheap, cost-effective, and profitable but still challenging.)

Old Favorites

Chocolate-covered Oreo Cake
Cake for our six month anniversary (image by ginnerobot, CC 2.0 license)

In honor of this blog’s six month anniversary, I’m going to relink to some of my favorite posts from the past:

  • [intlink id=”5″ type=”post”]My first post, on fuel cell and battery innovations[/intlink]
  • [intlink id=”119″ type=”post”]Why I am optimistic about our energy and climate future[/intlink]
  • [intlink id=”126″ type=”post”]Some reasons my optimism is tempered (a follow up to the post above)[/intlink]
  • [intlink id=”329″ type=”post”]My predictions for 2018 (ten years in the future)[/intlink]

Also, as regular readers know, I’ve been presenting a series of posts on zero net energy homes. I’ve recently added a new plug-in for the blog that makes it easy for you to find these series, and I’ve put the link to the series over on the right hand column (and right here).

Top Green Energy Stories For August 2008

Top Fivewoodleywonderworks
Top Five Stories

August was a great month for energy storage breakthroughs! In addition, a big talking head talks big, and a business-of-green-energy announcement make my list of top stories.

1. Hydrogen from water
2. Fuel cell breakthrough #1: cheap catalyst
3. Fuel cell breakthrough #2: better cathode
4. Al Gore’s call to action: The U.S. should “produce all electricity from carbon-free sources by 2018.” (Actually from late July, but my blog didn’t start until August!)
5. Green energy investment up 60% YoY in 2007, on target for 60% YoY growth in 2008

Moore’s Law depended (and still depends) on a constant flow of breakthrough technologies, processes, scale, and designs. You can’t necessarily predict how Moore’s Law will continue to hold two years from now, or five years from now, but you can be confident that through some combination of technologies, processes, and designs, the price/performance of IT will continue to decline at an exponential rate.

The top five green energy stories of 2008 give an indication that the same types of forces are at play in the green energy world. Numbers 1, 2, and 3 each represent a potential 10x reduction in the cost of the most expensive part of a particular energy flow. For number 4, Gore used the bully pulpit of a Nobel Prize and Oscar (and, oh yeah, he was nearly president) in a most constructive way. And number 5 illustrates that green energy technologies are on a growth rate of doubling about every 18 months.

Did these stories excite you as much as they did me? Were there other green energy stories in August that you feel are more important?

, , , ,

Another Analysis (More Detailed) Of Gore’s Call To Action on Renewable Energy

Wicked Barrel, by batintherain (Creative Commons license)
Wicked Barrel, by batintherain (Creative Commons license)

My very basic analysis of Al Gore’s call to action for “100% carbon free electricity” yesterday had the virtue of being dead simple. Jerome a Paris of The Oil Drum did a more detailed analysis back in July, based on wind energy generation, that reaches a similar conclusion to mine:

The short answer is: while 100% is probably unrealistic, it’s not unreasonable to expect to be able to get pretty close to that number (say, in the 50-90% range) in that timeframe, and it is very likely that it makes a LOT of sense economically.

As you’ll notice Jerome has made somewhat different assumptions from mine, particular in regard to the total electricity demand. As I mentioned, I plan to drill down more into my analysis and take it from the “zero-order” to “first-order”. I’ll also revisit my assumptions to make sure we’re comparing apples to apples.

Walmart’s Solar Roofs = A Manhattan of PVs

Artists conception - Manhattan covered with solar cells
Artist's conception - Manhattan covered with solar cells. If Walmart covers all its roofs with solar cells, they'll cover an area equal to Manhattan

The New York Times has a story today about the big box stores rushing to get solar cells on their roofs before a Federal tax break expires at the end of December. The article’s analysis is that they are primarily doing it for PR purposes, since PV-based energy is still a lot more expensive than conventional. The benefits of being able to say they are green are compelling. But the companies put a slightly different spin on it:

But retailers believe that they can achieve economies of scale. With coal and electricity prices rising, they are also betting that solar power will become more competitive, especially if new policies addressing global warming limit the emissions from coal plants.

Retailers, hoping to create a bigger market and positioning themselves at the forefront of a national shift toward renewable energy, are encouraging one another to join the bandwagon.

The current rule of thumb is that the U.S. gets about 0.1% of its electricity today from solar energy, doubling about every year (among other places, mentioned in this interview with Ray Kurzweil on NPR’s Science Friday).

I wonder how those numbers will change after this rush by the retailers?

Is this solar energy analysis is too simplistic?

According to this analysis from Clean Edge, (which I saw originally in the San Jose Mercury News, Solar energy cost may rival other forms soon, study says –

Solar energy will cost the same as power produced by coal, natural gas and nuclear plants in about a decade, a report released Tuesday suggests. By then, the price parity could propel solar adoption so that it accounts for 10 percent of U.S. electricity generation by 2025

If you listen to this kind of thinking, solar energy (which is defined as what, by the way?) is still far more expensive than other kinds. But solar energy, even today, has a finite payback time – if I put solar collectors on my roof, for example, eventually they will pay for themselves.

So that’s one way it’s wrong.

Secondly, the study assumes that conventional energy prices will go up by 3% per year. That could be a slight underestimate. Didn’t we just experience a three month period where gas prices nearly doubled? (That’s 100%, folks!).

I can’t make any argument about the assumption that solar energy prices will come down 18% per year. That’s a lot, by one metric, but we’ve certainly seen large and faster price drops in high tech in the past. Even the iPhone last month, which dropped in price by almost 50% in less than a year. Sure, that was partly through some magic AT&T financial pixie dust, but to the user, it’s a clear 50% price cut. There’s no reason similar magic pixie dust, whether from the government or from the utilities themselves, won’t contribute to market price declines.

The claim that solar currently accounts for less than 1/10th of a percent of the U.S. energy supply today is fine. But the assumption that it will still be less than 1 percent in 2015 (seven years from now) is curious. If we start at .1 percent, and double our solar usage every year, we end up at 128 times as much – 12.8% of today’s total. This is the amazing power of Ray Kurzweil’s “Law of Accelerating Returns.” Even if it takes two years for each doubling, we’re still up a factor of 32x in seven years. That means 3.2% today’s usage. Our total energy usage may also go up (although there are very good reasons to think it may not go up much and and will be starting a downward trajectory), but for a 32x increase in solar supply to translate to 1% of our total energy use, total energy use would have to double. Not too likely in the U.S., where population growth has stopped, and SUVs are starting their long decline.

Finally, there’s good reason to believe that solar energy will actually have a much larger share of U.S. energy usage, due to the power of “negawatts” (as explained brilliantly by Amory Lovins in this series of talks at Stanford in 2007), in which efficiency turns out to be the most cost effective way to power industry and create profits. Oh, and by the way, it significantly reduces our energy usage, by as much as a factor of five to seven!

The article combines a couple of types of fallacious thinking – that technological progress is linear, for example, rather than geometric, and that other factors, such as the desire to reduce greenhouse gases or realizing the benefits of negawatts throughout the economy, don’t have an additional accelerating effect on technology changes.