We Must Reduce Energy Use, Not Just CO2 Emissions, To Prevent Catastrophic Global Warming

playing with fire
Playing With Fire (image by charles chan, CC 2.0 license)

An article in Sunday’s Science Daily reports on research showing that more than half of the Earth’s warming since the dawn of the industrial age is due to the heat released from our energy use, not atmospheric warming due to the greenhouse effect.

While the greenhouse effect is still a significant contributor – and will become more so as GHG levels in the atmosphere rise – simply the heat released when burning fuels is also being stored in the atmosphere, as well as in the earth, sea, and arctic ice.

The researchers have calculated that the heat energy accumulated in the atmosphere corresponds to a mere 6.6% of global warming, while the remaining heat is stored in the ground (31.5%), melting ice (33.4%) and sea water (28.5%). They point out that net heat emissions between the industrial revolution circa 1880 and the modern era at 2000 correspond to almost three quarters of the accumulated heat, i.e., global warming, during that period.

Their conclusion is that simply capturing our CO2 emissions, will not prevent global warming. We have to actually reduce the amount of heat we are releasing into the world via our energy use – which mostly involves burning things, and therefore generating waste heat.

The good news is that solar photovoltaics, wind power, even solar thermal generate much less, or even negative, waste heat than either conventional energy sources, or nuclear energy. And of course energy efficiency is the cheapest and most cost-effective mitigation we have at our fingertips.

Link

German Solar PV Manufacturer Stakes a Claim in the U.S.

Top of Mt. Hood, Oregon
Mount Hood, Oregon (image by Tony the Misfit, CC 2.0 licensed)

The New York Times on Sunday reported about Solar World‘s new solar panel plant in Oregon. The Germany company is making a big ($300 million) bet that the United States is the place to be if you are a solar panel manufacturer.

The message for solar companies, Mr. Pichel says, is “get your butt over to the U.S. if you want to participate and get some of that stimulus package money.”

Solar photovoltaics still account for less than 1% of the electricity generated in the U.S. today. However, the article reports that in various markets, including California, the number of solar panels installed is doubling every year. At that kind of growth – even if it slows down slightly due to the current recession and credit crunch – in five to ten years solar electricity could account for a much more significant share of the electricity supply.

I’ve been focused lately in the blog on energy efficiency, and not so much on alternative energy sources, so it’s good to see that there’s still a lot of momentum going on there!

Shiny Rocks May Be Good For Solar Energy

Fools Gold
Fool's Gold (image by Clearly Ambiguous, CC 2.0 licensed)

Interesting note flying around the blogosphere yesterday (see here, here, and here, amongst many websites featuring the news) about a research project done at Berkeley. It found that, based on material cost and availability, solar photovoltaics made with iron pyrites (aka Fool’s Gold) are more likely to solve our energy crisis than PV made with silicon or CIGS thinfilms. This is due to both the cost of the raw materials and their availability – both crystalline silicon and the CIGS precursors are relatively expensive and relatively rare. Iron pyrite and its precursors are among the most common elements on earth, in contrast.

What we’ve found is that some leading thin films may be difficult to scale as high as global electricity consumption… if our objective is to supply the majority of electricity in this way, we must quickly consider alternative materials that are Earth-abundant, non-toxic and cheap. These are the materials that can get us to our goals more rapidly.

The paper noted that PV cells made with iron pyrite are not as efficient as those made with silicon, but here’s where it gets interesting. I did a Google search yesterday to find out just how efficient those iron pyrite solar cells are – and I can’t find them. There are a handful of papers about iron pyrite solar cells, but none that indicate it’s anywhere near being ready to compete even on the low-efficiency end. (E.g., see here, in a paper from 2000.)

So, that may mean I’m just not any good at searching on Google, and be that as it may. The other side of the coin is that this report lines up with what I’ve [intlink id=”119″ type=”post”]been saying since October[/intlink] – it’s not about the efficiency of the cells, it’s about the [intlink id=”194″ type=”post”]price/performance[/intlink]. We have plenty of surface area on which to put solar cells, even if they aren’t very efficient. What we don’t have is lots of extra money to pay for them – so low-efficiency cells that have a good price performance ratio – $1-2/kw or $0.10-0.30/kwh – are what we’re looking for.

(And of course, we need to be a lot more efficient in our energy usage, and be able to store that good sun power we’ve generated.)

In any case, I’m now looking forward to hearing about iron pyrite-based solar cells – if you know of any post-2000 research on this topic, definitely let me know!

DoE Secretary Steven Chu: We Need Nobel-Level Breakthroughs

Secretary of Energy Steven Chu
Secretary of Energy Steven Chu

Yesterday the New York Times published an interview (including some of the original audio) with our new Energy Secretary, Steven Chu. Among other comments, he said that to address the climate emergency, we need “Nobel-level breakthroughs” in several key areas – batteries, biofuels, and solar photovoltaics.” As an illustration, he pointed out:

The photovoltaics we have today, … without subsidy, and without even the additional cost of storage, it’s about a factor of five higher than electricity generation by gas or coal. Suppose someone comes along and invents a way of getting … solar photovoltaics at one fifth the cost, so you don’t even think about subsidies anymore. You just slap it everywhere… That, in my opinion, would take something, which I would say, is a bit of a breakthrough.”

There’s no arguing with that idea – if solar PV were five times cheaper, no one would need complicated “payback period” models to justify installing it. (Luckily, we do have those models, and so some people are taking the plunge.)

Of course, this is just the story of how technologies advance – it’s very familiar from the rise of semiconductors. A technology needs an ever-expanding “feedstock” of innovations, discoveries, and breakthroughs to grow at an exponential rate. In semiconductors, the history of technologies such as FET, MOS, CMOS, new clean room techniques, different types of lithography, and many other innovations each offered ever decreasing feature size and lower cost. This parade of innovations combined to ensure that just when one technology was reaching its limit of compactness, another newer and more efficient technology would be there to take its place. When the new one ran out of steam the cycle would repeat. (And several of those innovations resulted in Nobels.)

One example of the “old thinking” on PV is the projections about its availability and cost. Many of these projections assume a linear improvement in price/performance. To help save the world, the price/performance of solar electricity and batteries and efficiency and fuel cells must come down faster than the typical, linear projections – just as it did for semiconductors.

Luckily, despite a current dip in investment and research levels due to the economy, this is happening in the solar photovoltaics domain. [intlink id=”210″ type=”post”]New[/intlink] [intlink id=”218″ type=”post”]discoveries[/intlink], new manufacturing methods, and [intlink id=”66″ type=”post”]new thinking[/intlink] will continue to drive the price down. With luck, Chu’s support from his bully pulpit in the DoE can accelerate this process.

Hat tip to Watthead for turning me on to this interview.

Zero Net Energy Homes Part 4 – Honda Accord Versus Solar Panels

El �ºltimo de los mohicanos
Money ('El Altimo de los Mohicanos' - photo by wakalani, CC 2.0 licensed)

One of the biggest problems for residential solar electricity generation is that it just costs too darn much to install those panels on your roof. Over the next five and ten years this will change significantly as new developments from the labs make it into large-scale production. Eventually houses will be generating all their own electricity using photovoltaics as a matter of course.

But is there a way to think about the cost today that makes the cost even seem reasonable?

Well, if you’re thinking about buying a new car, you should read on. Each year you don’t buy a new car and continue to drive the one that you’ve already paid for, you pays for another year of your solar panels. At the end of the loan period (seven years in my example below), you’re getting free electricity from a system that increases the value of your home and has another 20 years of life at the minimum. If you’d bought a car, in seven years you’d be driving a rapidly depreciating vehicle that you’d probably have to replace soon.

For my house, after rebates, putting up solar panels today would cost about $22,000. This would be a 4kw system, offsetting about 92% of my electric bill, according to the solar power calculator at Clean Power Estimator. With a $3,000 down payment, and using SunPower’s “Smart Financing” with a seven year term, my monthly net cost would be about $250, after subtracting out my electric bill.

So, $22,000 total cost, $3,000 down payment, $250 monthly – that sounds just about exactly like buying a new car, doesn’t it? In fact, if I go to carsdirect.com and price out a new Honda Accord EX, that comes out to $22,372. My current car, a 2000 Honda Accord, is worth $4,000. So I need to finance $18,000. With a four year loan, I’ll be paying about $420 per month.

Netting it out, for each year that I make the decision to buy solar panels versus a new car, I actually save about $170 per month. At the same time, according to the solar power calculator, I eliminate almost four tons of CO2 (worth an additional $320 at the currently accepted value of $80/ton). After seven years, all that electricity will be free to me, for at least the rated life of the panels. And I’ll get most or all of the cost of the panels back when I sell my house. When I sell the new Honda, I’ll get a lot less than I paid for it.

As an additional note, if you’re thinking about buying a new BMW, such as an M3. If you chose a BMW 335i with Sport Package instead, you could put up the solar panels with the difference in cost: 1 BMW M3 = 1 BMW 330i + Sport Package + solar panels. You’d get nearly the same performance – much more than you can effectively use anywhere in the U.S. except on a race track – and you’d offset all the CO2 you’d be generating with your new car.

Definitely let me know if I’ve convinced you to put up solar panels instead of buying a car this year! Or if you have any other comments on this topic – I’d love to hear from you.

Zero Net Energy Homes Part 2: Some Beautiful Examples

Cannon Beach zero-net energy house
Cannon Beach zero-net energy house

In lieu of a longer post today, I thought I’d provide links to examples of some of the amazing homes people are building today to achieve zero net energy:

Ten Energy Predictions For The Next Decade

Snow on the San Gabriel Mountains (photo by Jerry Thompson1)
Snow on the San Gabriel Mountains (photo by Jerry Thompson1, CC 2.0 license)

On December 30 of last year (six days ago), my wife and I were in Pasadena, CA visiting the Greene and Greene exhibit at the Huntington Library. It was one of those glorious and rare smog-free days in the LA basin. The air sparkled, you could see for miles in every direction, and mountain range after mountain range was visible – all the way out to the snow-covered San Gabriels. Nowadays, the air is only ever this clear around the Christmas holiday, when the freeway traffic is substantially reduced and a lot of factories shut down for the week. It got me thinking about how the future – say ten to twenty years hence – may be unrecognizable in both dramatic and mundane ways. For example, smog-free days may no longer be rare in LA, once the economy has shifted off fossil fuels. (I suspect the traffic will remain, unfortunately!)

Like LA’s typical skies, the energy future is murky in the short term – this year and 2010 – and I’ll leave those predictions to others. But the big trends – sustainability, carbon fighting, and technological breakthroughs – enable us to make better sense of the mid- and long-term. Therefore, In the spirit of the New Year, the incoming administration, and the tipping point that the world has come to about climate change and sustainability, here are ten things I believe are very likely to happen in the next ten years.

  1. Residential solar PV will be cost effective in most U.S. locations (via a combination of price reduction, new design thinking, much more efficient homes, and a carbon tax on fossil fuels).
  2. Home energy storage – via batteries, hydrogen reforming, fuel cells, or other technology – will be available and installed in 10% of new homes in California, for when the sun don’t shine.
  3. More than 10% of new homes in California will be zero-net energy.
  4. 50% of new residential construction in California will be zero-net energy “ready.”
  5. The current LEED standards will be considered obsolete.
  6. More than 20% of peak grid electricity will come from excess capacity from residential solar PV.
  7. There will be general consensus that efficiency and frugality alone will not provide enough CO2 mitigation to prevent major climate change – we will need a technological solution to actually reducing atmospheric CO2 or artificially cooling the earth.
  8. There will be a mid-priced carbon fiber, plugin hybrid passenger car in production that gets more than 75 miles per gallon. The company making it will be the “next GM.”
  9. 10% of the cars on the road will be powered by 100% renewable energy and will be essentially non-polluting.
  10. New technologies for capturing carbon from the atmosphere will be available, powered by excess solar capacity.

What do you think? Am I off base here? Too optimistic? Too pessimistic? Let me know in the comments. I’d love to hear your thoughts, challenges, and predictions for 2018.

Zero-net Energy Series Coming Up

Over the next few weeks, I will be publishing a series on “zero-net energy” residences (related to predictions 1-6 above). This area is about to explode. We already have all the technology, and some people have the experience, to build “zero-net energy ready” houses cost effectively. And although there’s currently a premium to get to zero-net energy, over the next ten years this premium will go to zero, and probably it will be cost-effective to get to positive-net energy – where the house is generating more energy than it needs! Talk about a world-changing situation – it really is possible to have energy too cheap to meter, but it’s going to come off our roofs, not from a nuclear plant or one of those imaginary fusion reactors.

A Bright Spot In The Housing Crisis – Solar Houses Still Selling

In an October article Will Demand for Solar Homes Pick Up? Business Week reporter Adam Aston discovers that houses with built in solar energy collectors are bucking the general downward trend in the market.

Consumers recognize that green homes “save money month in, month out,” says Rick Andreen, president of Shea Homes Active Lifestyles Communities in Scottsdale, Ariz.

The combination of the renewal of the investment tax credits for solar installations, the ascendance of “green” lifestyles, and to some degree the target demographic of these homes, the number of solar houses in the U.S. is set to spike from 40,000 units. Several of the big home builders in Arizona, California, and other states are ramping up their plans for solar houses. Especially after the experience of Standard Pacific Homes in their Whitney Ranch, a development south of Sacramento. Sales had been soft, but when Standard Pacific put solar systems on a group of new models in the development, they sold out. Now they’re putting solar panels on all 304 of the homes.

30-fold Increase In Solar Energy By 2016 – Moore’s Law, Anyone?

Solar Power International Logo
Solar Power International Logo

The opening keynotes at the Solar Power International trade show last week were eye-opening. (See the Tuesday Keynotes video on this page – Resch at 20 minutes, Hamm at 37 minutes.)

Rhone Resch of the Solar Energy Industries Association first told the story of getting the investment tax credit for solar renewed – 17 failed votes before it finally passed with the Paulson Bailout bill. He then outlined the benefits to the solar industry of the ITC – stability for solar energy businesses, creation of thousands of new business opportunities due to the remove of the residential solar cap, and a return to leadership of the US in solar. “Solar energy is going to create 440k new jobs, 1.2 million new solar installations, and 28 gigawatts of new capacity – enough to power seven million homes throughout the U.S.”

To achieve the 28 gigawatts of new solar electric generation capacity predicted by Resch in the next eight years, Julia Hamm of the Solar Electric Power Association (SEPA) threw down a challenge to the attendees. The industry must “be bold, be innovative, be strategic.” In particular, she outlined four key policy guidelines the industry must embrace to achieve this goal.

Utility Ownership of Solar Power Projects

The utility and solar industries must collaborate to find program structures, such as utility ownership of distributed photovoltaics, that provide a winning scenario for both industries, as well as for customers at large. The solar industry can utilize this new market segment as a buffer until home and small business owners are back on more solid financial footing.

Increased Utility Engagement in Solar Markets

The utility and solar industries must work together to get more utilities engaged, starting by increasing the solar knowledge base of utility employees, from top executives down to distribution engineers. We must move beyond having ninety seven percent of all grid-connected solar installations in just 10 utilities’ service territories.

Greased Wheels

The utility and solar industries must work in partnership with regulators and investors to push for approval and funding of new transmission projects and the development of smart grid configurations to expedite the timeframe in which new utility-scale and distributed solar projects can come on line and provide maximum value.

Development of Innovative Approaches

By working in collaboration, the utility and solar industries can make great strides towards modernizing today’s electricity infrastructure and offering customers affordable and clean power. But the status quo will not cut it. We need bold new ideas developed in tandem for the mutual benefit of both industries, and society at large.

(A press release version of this challenge is here.)

The 28 gigawatt figure represents an increase in solar capacity of more than thirty fold between 2009 and 2016. This is approximately three times the estimated amount of generation predicted to come online as a result of existing renewable portfolio standards and policies in states with existing solar carve outs.

However, not only does 30-fold growth far outstrip most predictions for solar energy capacity in the next eight years, it has another interesting property. It corresponds to a “Moore’s Law-type” of growth, with a doubling period of about every 18 months. This is the first time I’ve heard a solar energy organization step up to a prediction of a Moore’s Law-type growth rate. And it means that in 18 years, if the doubling rate stays constant, solar would be responsible for over 400 gigawatts of capacity, or just about equal to our current energy usage in the U.S. Solar could be providing nearly 100 percent of our energy by 2026, or even more if our overall energy usage goes down due to efficiency, as is possible given California’s example.

And if our solar capacity keeps on doubling every year and half after that? What will we do with all that energy? Your comments welcome, of course!

Expanding Options In Solar Energy and Electric Cars

Mission Peak (L), Mount Allison (C) and Monume...
Mission Peak in Fremont, CA. Image via Wikipedia

A roundup of a few stories that came out this week that I found particularly interesting.

  • Solyndra, a startup in Fremont, CA (just down the street from my office), is using a new form factor for thin film solar cells:

    Unlike conventional solar panels, which are made of flat solar cells, the new panels comprise rows of cylindrical solar cells made of a thin film of semiconductor material. The material is made of copper, indium, gallium, and selenium. To make the cells, the company deposits the semiconductor material on a glass tube. That’s then encapsulated within another glass tube with electrical connections that resemble those on fluorescent lightbulbs. The new shape allows the system to absorb more light over the course of a day than conventional solar panels do, and therefore generate more power.

    Not only do they not need trackers, but because they are mounted with space between each tube, they aren’t susceptible to wind and they can collect light reflected off the building’s roof and ambient light coming in obliquely.

    What I like about this story is that it shows that there’s still a lot more innovation to be done in all areas of alternative energy design – yesterday I saw another report about a new fuel cell membrane made of a cheap material instead of platinum, and there’s practically a new wind energy device every week. They’re not all going to be winners, but it’s the kind of design ferment that’s going to lead to big cost and practicality improvements in every area.

  • The EPA provides an interactive analysis (using Google Earth) of marginal and contaminated land that could be used for renewable energy farms – wind and/or solar:

    According to the EPA, many lands tracked by the agency, such as large Superfund sites, and mining sites offer thousands of acres of land, and may be situated in areas where the presence of wind and solar structures are less likely to be met with aesthetic, and therefore political, opposition.

    One stumbling block for a massive transition to solar power in the U.S. has been the land use question. I’m not saying we want to build our power on contaminated lands, but it’s interesting to see this as an option.

    Via CleanTechnica.com

  • Renault commits to electric vehicles. Saying that:

    “EVs are a necessity because hybrids cannot deliver the level of gasoline use and emissions reductions that governments and customers are demanding of automakers”

    Renault unveiled two zero-emission concept cars at the Paris autoshow Mondiale de l’Automobile, both of which are pure electric. The cars have a range of 160-200 kilometers (95-120 miles) and are designed for day-to-day use and short weekend trips, “not vacations” as Renault admits.

    Renault is committing to EVs because they believe that’s the only they’ll be able to deliver the gasoline economy and emissions reductions being demanded by both the market and governments.

These stories caught my eye as not just “more of the same” this week. What green energy stories got your interest up recently?

Enhanced by Zemanta