DoE Secretary Steven Chu: We Need Nobel-Level Breakthroughs

Secretary of Energy Steven Chu
Secretary of Energy Steven Chu

Yesterday the New York Times published an interview (including some of the original audio) with our new Energy Secretary, Steven Chu. Among other comments, he said that to address the climate emergency, we need “Nobel-level breakthroughs” in several key areas – batteries, biofuels, and solar photovoltaics.” As an illustration, he pointed out:

The photovoltaics we have today, … without subsidy, and without even the additional cost of storage, it’s about a factor of five higher than electricity generation by gas or coal. Suppose someone comes along and invents a way of getting … solar photovoltaics at one fifth the cost, so you don’t even think about subsidies anymore. You just slap it everywhere… That, in my opinion, would take something, which I would say, is a bit of a breakthrough.”

There’s no arguing with that idea – if solar PV were five times cheaper, no one would need complicated “payback period” models to justify installing it. (Luckily, we do have those models, and so some people are taking the plunge.)

Of course, this is just the story of how technologies advance – it’s very familiar from the rise of semiconductors. A technology needs an ever-expanding “feedstock” of innovations, discoveries, and breakthroughs to grow at an exponential rate. In semiconductors, the history of technologies such as FET, MOS, CMOS, new clean room techniques, different types of lithography, and many other innovations each offered ever decreasing feature size and lower cost. This parade of innovations combined to ensure that just when one technology was reaching its limit of compactness, another newer and more efficient technology would be there to take its place. When the new one ran out of steam the cycle would repeat. (And several of those innovations resulted in Nobels.)

One example of the “old thinking” on PV is the projections about its availability and cost. Many of these projections assume a linear improvement in price/performance. To help save the world, the price/performance of solar electricity and batteries and efficiency and fuel cells must come down faster than the typical, linear projections – just as it did for semiconductors.

Luckily, despite a current dip in investment and research levels due to the economy, this is happening in the solar photovoltaics domain. [intlink id=”210″ type=”post”]New[/intlink] [intlink id=”218″ type=”post”]discoveries[/intlink], new manufacturing methods, and [intlink id=”66″ type=”post”]new thinking[/intlink] will continue to drive the price down. With luck, Chu’s support from his bully pulpit in the DoE can accelerate this process.

Hat tip to Watthead for turning me on to this interview.

Old Favorites

Chocolate-covered Oreo Cake
Cake for our six month anniversary (image by ginnerobot, CC 2.0 license)

In honor of this blog’s six month anniversary, I’m going to relink to some of my favorite posts from the past:

  • [intlink id=”5″ type=”post”]My first post, on fuel cell and battery innovations[/intlink]
  • [intlink id=”119″ type=”post”]Why I am optimistic about our energy and climate future[/intlink]
  • [intlink id=”126″ type=”post”]Some reasons my optimism is tempered (a follow up to the post above)[/intlink]
  • [intlink id=”329″ type=”post”]My predictions for 2018 (ten years in the future)[/intlink]

Also, as regular readers know, I’ve been presenting a series of posts on zero net energy homes. I’ve recently added a new plug-in for the blog that makes it easy for you to find these series, and I’ve put the link to the series over on the right hand column (and right here).

Study: Make Money and Create Jobs By Greening California’s Economy

Boutiques along Fillmore Street in Pacific Heights
Fillmore Street in San Francisco; Image via Wikipedia

The San Francisco Chronicle reports on the conclusions of a study just completed by the California State Air Resources Board that “going green” will be extremely beneficial to the state’s economy.

Under the California Global Warming Solutions Act of 2006, the state must impose a limit on the amount of pollutants companies emit and expand renewable energy. These changes, along with others, would result in 100,000 new jobs, boost the state economy by $27 billion and increase personal income by $14 billion, the study said.

It’s traditional to believe that becoming green – reducing energy usage, switching to renewable energy, and curbing greenhouse gas emissions – is costly and a net drag on economies. But studies like this one, as well as many others (see the Rocky Mountain Institute website for many more examples), show again that the future is going to be both green and profitable.

Enhanced by Zemanta

Renewable Energy Investment up 60% Per Year in 2007, On Same Pace for 2008

Windmills Along the M6
Windmills Along the M6, photo by Bob Cox Photography

Saw this news item about the growth of green energy investment last week, which tends to correlate with the idea that the growth rate of renewable energy is not linear, but geometric (that is, doubling every n years, like Moore’s Law).

The UN Environment Programme (UNEP) reports that investments in renewable energy in 2007, at $148 billion, were 60 percent above 2006, with 2008 growth continuing. Achim Steiner, head of UNEP, said:

“The clean energy industry is maturing and its backers remain bullish. These findings should empower governments both North and South to reach a deep and meaningful new agreement by the crucial climate convention meeting in Copenhagen in late 2009. It is increasingly obvious to the public and investors alike that the transition to a low-carbon society is both a global imperative and an inevitability. This is attracting an enormous inflow of capital, talent and technology. But it is only inevitable if creative market mechanisms and public policy continue to evolve to liberate rather than frustrate this clean energy dawn. What is unfolding is nothing less than a fundamental transformation of the world’s energy infrastructure.”

There was similar news recently about the growth of both solar energy generation and wind energy generation.

Thanks to blow-hard winds, the United States has just become the world’s largest generator of wind energy.

Germany previously held this distinction, though since the United States has about 26 times more land than Germany, the milestone isn’t a huge surprise. Nonetheless, we weren’t expected to reach this point until late 2009. [Emphasis added – npd]

The key point is that we’re ahead of schedule on renewables, because the schedule was based on linear growth projections. The big question that remains is not whether the growth is exponential, but what’s the time period for doubling? Is it two years? Three years? One year? What do you think?

Enhanced by Zemanta

Both Sides Essentially Agree in “Economist” Debate – Act Now!

A transmission substation decreases the voltag...Image via Wikipedia

The Economist magazine hosted an online debate earlier this week, on the proposition “We can solve our energy problems with existing technologies today, without the need for breakthrough innovations.”? Speaking in favor of the proposition was Joseph J. Romm, Senior Fellow at the Centre for American Progress. Speaking against was Peter Meisen, President, Global Energy Network Institute.

In my opinion, although Meisen had some good observations of some non-“business as usual” innovations that are needed, the proposition was well-defended by Romm. He argued that not only do we not have time to wait for new breakthroughs in alternative energy, we have enough technology now – solar thermal, efficiency, wind, etc. – that we can address climate change with our current capabilities. He agrees that innovations will be welcome, but they are not required.

First, new breakthrough energy technologies simply don’t enter the market fast enough to have a big impact in the time frame we care about. We need strategies that can get a 5-10% share—or more—of the global market for energy in a quarter century. Second, if you are in the kind of hurry humanity is in, then you are going to have to take unusual measures to deploy technologies far more aggressively than has ever occurred historically.

Bottom line: If we want to preserve the health and well-being of future generations, then focusing government policy and resources on speeding up existing technology deployment is far more important than focusing them on breakthrough technology development.

Meisen actually agreed completely that we need to start now with what we have today in terms of technology. But as I read it, his major point was that we need innovations not in technology, but in policy, thinking, and approach to really solve our climate and energy problems:

We now have more elegant, sophisticated and cleaner ways to generate and deliver electricity for our society. Remaining addicted to fossil fuels is damaging to our environment and bad long term policy. It is unsustainable. Aggressive policies that encourage conservation, energy efficiency, clean transport and linking renewable resources are the new priorities. Flipping our energy paradigm upside down will drive innovation and investment towards a de-carbonised future–and just makes sense..

The bottom line conclusion – get started now with the technology we have (both speakers agree) but direct some of our efforts toward new ways of solving the problem, such as improved policies from our governments (including better cooperation on international electricity transmission).

The entire debate is well worth reading on the Economist web site. They are open for comments, as am I.

(Thanks to CleanTechnica.com for the link to the debate.)

Enhanced by Zemanta

Clean and renewable energy also profitable for individuals who want jobs

A report from Worldwatch Institute details the way that traditional high carbon industries, such as coal, are shedding jobs while renewable energy and energy efficiency industries are adding jobs.

An estimated 2.3 million people worldwide currently work either directly in renewables or indirectly in supplier industries. The solar thermal industry employs at least 624,000 people, the wind power industry 300,000, and the solar PV industry 170,000. More than 1 million people work in the biomass and biofuels sector, while small-scale hydropower employs 39,000 individuals and geothermal employs 25,000.

It’s not just those people and organizations applying clean and renewable energy who are profiting, but also those doing the work.