CalTech Chemist Puts 10-year Target on “Competitive Solar Energy”

On 140 acres of unused land on Nellis Air Forc...Image via Wikipedia

Harry Gray, the Arnold O. Beckman Professor of Chemistry and Founding Director of the Beckman Institute at CalTech, spoke at the American Chemical Society annual meeting in April of this year.

Expert Foresees 10 More Years Of Research & Development To Make Solar Energy Competitive

Gray emphasized this point: “The pressure is on chemists to make hydrogen from something other than natural gas or coal. We’ve got to start making it from sunlight and water.”

Enhanced by Zemanta

More amazing energy storage news

I posted yesterday about three new breakthrough discoveries related to energy storage from the last week, but they keep on coming – here’s another:

Some researchers at Melbourne’s Monash University in Australia have made yet another breakthrough related to making fuel cells more feasible for general purpose use. Their breakthrough is related to a new cathode design, made with a much cheaper material than the typical platinum. The result is an order of magnitude reduction in the materials cost for the fuel cell.

Professor Maria Forsythe and her colleagues used a conducting polymer (a special plastic that conducts electricity) called poly(3,4-ethlenedioxythiphene), or PEDOT for the cathode, instead of platinum. The amount of platinum required for a passenger car fuel cell costs $3500 to $4000, and accounts for the major part of the cost of the fuel cell. Using PEDOT for the cathode reduces the cost to a few hundred dollars.

Forsyth says the cathode could also be used in zinc air batteries, which are under development for storing energy in cars.

The energy game is just getting started

It’s been a great week for energy! In separate announcements, scientists at MIT, a university in Spain, and at an energy startup in Texas made some amazing claims that to me indicate that what we think we know about alternative energy and energy efficiency, we don’t know.

At MIT, Dr. Daniel Nocera announced a new, much lower energy process for separating water into hydrogen and oxygen, using new catalysts developed in his labs. This discovery, if it can be successfully commercialized, represents perhaps the best currently known way to store solar energy for when the sun’s not shining. The idea is that when the sun is shining, electricity generated by solar photovoltaic cells would be used to generate hydrogen, which would then be used later in a fuel cell to generate electricity when it’s needed, such as to drive your electric car, or to heat the water for your shower in the morning.

Using sunlight to split water, storing solar energy in the form of hydrogen, hasn’t been practical because the reaction required too much energy, and suitable catalysts were too expensive or used extremely rare materials. Nocera’s catalyst clears the way for cheap and abundant water-splitting technologies.

In an unrelated story, scientists at Universidad Complutense de Madrid in Spain announced a new electrolyte for use in solid oxide fuel cells which could significantly improve their practicality. Until now,

the high temperatures required for efficient operation make solid-oxide fuel cells expensive and limit their applications. The low-temperature electrolyte reported by the Spanish researchers could be a “tremendous improvement” for solid-oxide fuel cells, says Eric Wachsman, director of the Florida Institute for Sustainable Energy, at the University of Florida.

Finally, EEStor, a hugely-funded battery startup in Texas announced a major milestone in their efforts to create a new battery technology that “will have more than three times the energy density of the top lithium-ion batteries today and … the ability to recharge in less than five minutes.” There is a lot of skepticism about EEStor’s claims in the scientific community, in part because they have not yet demonstrated their technology to outside reviewers. But if their technology is real, and a number of top-line venture capital firms are betting that it is, the accepted wisdom about batteries will have a sea change. There’s even a car company that’s committed to using the new battery in the near term:

Toronto-based ZENN Motor, an EEStor investor and customer, says that it’s developing an EESU-powered car with a top speed of 80 miles per hour and a 250-mile range. It hopes to launch the vehicle, which the company says will be inexpensive, in the fall of 2009.

Hopefully we’ll be hearing more concrete information soon. Dick Weir, founder and president of EEStor, says they’ll be coming out with more information about their progress and technology on a “more rapid basis.”

That makes three major announcements about energy storage in one week, any one of which, if it’s successfully commercialized, changes the economics and practicality of alternative energy. Given that alternative energy and energy efficiency are already cost-effective and “ready for prime time,” these changes could literally deliver the very low-cost energy that nuclear power advocates promised 50 years ago. But this time it will be truly clean.