No Manhattan Project, But Don’t Say No To Breakthrough Innovations

a polar bear and her baby
The polar bears say "keep the innovations coming - it's getting warm out here!" (image by Just Being Myself, CC 2.0 licensed)

While I agree with Joseph Romm on Climate Progress that we can’t count on a “Manhattan Project”-style endeavour to engineer our way out of the climate crisis in the short term, nonetheless, I think it’s reasonable to have a certain expectation that technology will improve over the right timescale, so we can be ready to take advantage of it.

A few weeks ago Martin Brown had a great post on his Fairsnape blog on Recession Thoughts and Tips. One of his many excellent suggestions was

Stand in the future and observe the industry in 2016/2019 – climate change will not be ‘put on hold’ during the recession – so do you have a route to zero mapped out?

His suggestions apply, of course, not only in a recession, but also if you want to help make big changes happen. In particular, “Standing in the future” is critical for those who are trying to make changes in response to climate change to visualize how things must be (for us to survive) in 2020 or 2030, because only then can we figure out how to get there.

The key challenge for that kind of thing is thinking big enough! Small example: If you’d asked me twenty years ago, or even ten, if it was every going to be possible to watch video on my phone, I’d have said “No, there’s just not going to be enough bandwidth for that to happen. I don’t ever expect that to be something we can do.” Was I ever wrong! And I consider myself open-minded and an outside the box thinker!

It’s very likely that the technologies and practices that get us out of a climate change disaster aren’t invented yet, or at best are in labs somewhere. Those of us – the rest of us – who need to take those inchoate and early ideas and turn them into market realities need a LOT of imagination to forcefully move the world out of its current ruts.

That’s why I often post news about discoveries coming out of labs, or going into the development process. Daniel Nocera’s [intlink id=”162″ type=”post” target=”_blank”]hydrogen reforming[/intlink], and [intlink id=”181″ type=”post” target=”_blank”]nanotechnology breakthroughs[/intlink], or technologies like or based on them, will be changing our lives in the next 10, 20, or fifty years – whether by mitigating carbon, or helping us store or generate renewable energy, or perhaps in ways we haven’t even thought of yet.

If there are particular technologies you are watching, let me know in the comments – I’ve love to hear about them.

DoE Secretary Steven Chu: We Need Nobel-Level Breakthroughs

Secretary of Energy Steven Chu
Secretary of Energy Steven Chu

Yesterday the New York Times published an interview (including some of the original audio) with our new Energy Secretary, Steven Chu. Among other comments, he said that to address the climate emergency, we need “Nobel-level breakthroughs” in several key areas – batteries, biofuels, and solar photovoltaics.” As an illustration, he pointed out:

The photovoltaics we have today, … without subsidy, and without even the additional cost of storage, it’s about a factor of five higher than electricity generation by gas or coal. Suppose someone comes along and invents a way of getting … solar photovoltaics at one fifth the cost, so you don’t even think about subsidies anymore. You just slap it everywhere… That, in my opinion, would take something, which I would say, is a bit of a breakthrough.”

There’s no arguing with that idea – if solar PV were five times cheaper, no one would need complicated “payback period” models to justify installing it. (Luckily, we do have those models, and so some people are taking the plunge.)

Of course, this is just the story of how technologies advance – it’s very familiar from the rise of semiconductors. A technology needs an ever-expanding “feedstock” of innovations, discoveries, and breakthroughs to grow at an exponential rate. In semiconductors, the history of technologies such as FET, MOS, CMOS, new clean room techniques, different types of lithography, and many other innovations each offered ever decreasing feature size and lower cost. This parade of innovations combined to ensure that just when one technology was reaching its limit of compactness, another newer and more efficient technology would be there to take its place. When the new one ran out of steam the cycle would repeat. (And several of those innovations resulted in Nobels.)

One example of the “old thinking” on PV is the projections about its availability and cost. Many of these projections assume a linear improvement in price/performance. To help save the world, the price/performance of solar electricity and batteries and efficiency and fuel cells must come down faster than the typical, linear projections – just as it did for semiconductors.

Luckily, despite a current dip in investment and research levels due to the economy, this is happening in the solar photovoltaics domain. [intlink id=”210″ type=”post”]New[/intlink] [intlink id=”218″ type=”post”]discoveries[/intlink], new manufacturing methods, and [intlink id=”66″ type=”post”]new thinking[/intlink] will continue to drive the price down. With luck, Chu’s support from his bully pulpit in the DoE can accelerate this process.

Hat tip to Watthead for turning me on to this interview.

Fuel Cell Innovation Update

The week I started this blog in August 2008, there were [intlink id=”5″ type=”post” target=”_blank”]three major fuel-cell related discoveries[/intlink] making the rounds in the science magazines. Since then, there have been [intlink id=”7″ type=”post” target=”_blank”]new announcements every week[/intlink] of an [intlink id=”229″ type=”post” target=”_blank”]improved catalyst or membrane or electrolyte[/intlink]. As these discoveries mature into real products and enter the market, the option of using fuel cells for energy storage, both for homes as well as vehicles, will become more and more cost-effective.

Energy storage is potentially a big part of the zero-net energy house picture, and is certainly critical for the hydrogen automobile transition. I thought I’d highlight a few recent discoveries and advances in the world of fuel cells, the “energy storage of the future.”

  • Cheaper Fuel Cells with nanotubes instead of platinum:

    “Fuel cells haven’t been commercialized for larger-scale applications because platinum is too expensive,” says Liming Dai, a materials-engineering professor at the University of Dayton, in Ohio, who led the work. “For electrodes, you need a cheaper material that still has a high performance.”

  • A new catalyst could make ethanol fuel cells practical for portable gadgets

    The new catalyst, developed by researchers at Brookhaven National Laboratory, breaks the carbon bonds without high voltages, efficiently releasing enough electrons to produce electrical currents 100 times higher than those produced with other catalysts.

  • A new fuel cell uses a cheap nickel catalyst

    Now researchers in China have developed a fuel cell that uses a new membrane material to operate in alkaline conditions, eliminating the need for an expensive catalyst. The power output of the new prototype, which uses nickel as a catalyst, is still relatively low, but it provides a first demonstration of a potentially much less expensive fuel cell.

  • A novel low-temperature electrolyte could make solid-oxide fuel cells more practical

    Solid-oxide fuel cells are promising for next-generation power plants because they are more efficient than conventional generators, such as steam turbines, and they can use a greater variety of fuels than other fuel cells. They can generate electricity with gasoline, diesel, natural gas, and hydrogen, among other fuels. But the high temperatures required for efficient operation make solid-oxide fuel cells expensive and limit their applications.

Home-generated energy is sustainable, non-polluting, and carbon-free. As the price of energy generation continues to drop, it’s possible to imagine [intlink id=”329″ type=”post” target=”_blank”]the nation’s homes becoming the nation’s power plant[/intlink]. But that can’t happen until we have effective home-based energy storage.

Avoiding The Cliff Ahead

Uluwatu Temple, Bali (HDR)
A cliff in Bali (image by seanmcgrath, CC 2.0 licensed)

My green building and blogging colleague Barry Katz just had a post about James Howard Kunstler on his The Future Is Green Blog. Kunstler is one of the “dystopians” featured in a  New Yorker article last week. Kunstler is not sanguine about what the future is going to look like for us and our descendants. He thinks that not only is global warming likely to cause a disaster, but so is the current, or an upcoming, financial meltdown. Barry writes:

In his view, anything short of ending our dependence on cars for personal transportation is a doomed enterprise.

In his blog ClusterF**k nation, Kunstler writes:

I’ve been skeptical of the “stimulus” as sketched out so far, aimed at refurbishing the infrastructure of Happy Motoring. To me, this is the epitome of a campaign to sustain the unsustainable — since car-dependency is absolutely the last thing we need to shore up and promote.

Could the terrible things he predicts happen? In the New Yorker interview he provides as an example and a warning the famous fall of the Roman Empire – the city of Rome itself went from a population of over one million in 100 AD to less than 50,000 in a little over 400 years. And there certainly have been many other similar collapses in history – even in pre-Columbian North America there were multiple population collapses due to resource overuse (and genocide, but that’s another topic).

The difference today – at least we hope – is that we have some Cassandras – Al Gore, Kunstler, the IPCC, me and Barry Katz, among many others – warning us, and we have the means and opportunity to take the warning. The question is, do we have the will to put the pedal to the metal to address the problems? For me, I see that as doing the following, and doing it much faster than anyone is actually predicting is possible today:

  • Immediately stop wasting energy – this means getting our houses and commercial buildings more efficient, both new and existing ones; getting more efficient cars on the road
  • Build out utility scale renewable energy as fast as humanly possible
  • Develop and commercialize technologies for distributed energy generation (e.g., photovoltaic roof panels and paint, mini-wind turbines, ground source heat pumps) and get them cheap enough to deploy everywhere
  • Develop and commercialize technologies for distributed energy storage – effective energy storage is one of the key sticking points for my vision of zero net energy homes and for accelerating the decline of traditional power plants
  • Figure out a way, or several ways, to get some of the CO2 back out of the atmosphere – reforestation is a start (and can make a significant difference, according to this study)
  • Finally, make structural changes to the rules and incentives of life so people will work closer to where they live, will be able to take public transit in a reasonable way, choose to build highly efficient homes not because its the right thing to do, but because it’s the law, or there are other concrete benefits, and so that businesses will find it’s profitable to save the world – whether it’s through being more efficient themselves, or by helping the rest of us “do the right thing”

I call this blog “Keeping The Lights On” because I am optimistic that we’ll figure out how to have a decent life without CO2, that we’ll figure out how to keep the oceans from rising too much and losing too many species, and that civilization won’t collapse due to a financial crisis in the meantime. There are a lot of hurdles to be leapt to accomplish this, and many of them will be costly – but that means that someone’s going to make some money on them, so there will be incentives. And that’s the other half of the title – “Profitable Applications” – business can drive this transition, for profit. The big challenge is getting business ramped up fast enough to save our butts – I think it can happen, and even with the economy in its current sad state, we’re still seeing hopeful signs.

Well, that’s a couple of pages full of assertion and conjecture – I’d love to hear your thinking on this.

Zero Net Energy Homes – Part 1

Beautiful sunset (CC 2.0 license)
Beautiful sunset (photo by Santa Rosa OLD SKOOL, CC 2.0 license)

This is the first post in a series on zero-net energy homes. Over the course of the series I will be covering all aspects of this topic, from the technology and knowledge available today, to the changes needed in technology, building codes, trade skills, design approaches, and will to achieve the goal of all new homes eventually being zero net energy.

Definitions and feasibility

What is a “zero-net energy home?” Zero net energy homes generate as much energy as they use. Energy used = Energy Generated. The experience of thousands of “off the grid” home owners and those bleeding edge homeowners with big solar panel installations on their roofs show that zero-net energy homes are technically feasible today. For example, see this article on Amory Lovins’ home and office in Snowmass, CO.

We know how to build them. Unfortunately, for most homeowners, they are too expensive, because the energy generation side of the equation is too costly. There are three ways to address this problem.

  1. Reduce the cost of home-based energy generation, typically either solar or wind. That depends on technological improvements and manufacturing efficiencies by the solar panel companies, and they are busily doing their best to address this situation.
  2. Change the cost basis for comparison – energy generation is expensive compared to the cost of electricity from coal-fired plants, but a carbon tax on those plants would automatically make solar more competitive (and raise the cost of energy for all of us).
  3. Make the demand side of the equation – energy used – smaller. Reducing the energy used by half cuts the energy required by half, which cuts the cost by half. And typically reducing energy use has numerous other cost benefits, and often performance benefits as well.

Over the course of this series of articles, I’ll be looking at how both sides of the equation can be reduced, but the particular focus will be on getting the demand side down.

Privation is not the solution

One way to reduce the energy use of the home is simply to do less – for example, you can save a lot of hot water if you simply stop showering every other day. Other techniques are leave the heater off when it’s cold, or the AC off when it’s hot. There’s also sitting in the dark – lighting accounts for about 15% of home energy use. Strangely, most homeowners in the U.S. are unwilling to reduce their energy demand by cutting “services” in this way.

Therefore, we have to find ways to reduce energy usage while not cutting the “services” the home provides. We all need our showers, our lights, and our comfortable temperatures. The good news is that by making small changes in how homes are designed and built, typically at a very small increment to the cost of the home overall, we can build houses that use one half the energy or less, and often at a higher level of comfort and “service” than standard-built homes.

As we will see over the next few articles, we already have all the technology, and some people have the experience, to build “zero-net energy ready” houses cost effectively.

On the energy generation side, although there’s currently a premium to get to zero-net energy, over the next ten years this premium will go to zero. In fact, looking farther ahead, it may become cost-effective to get to positive-net energy – where the house is generating more energy than it needs! Such a change has world-changing implications – but we’ll cover that later in the series.

Coming up

Zero-net energy homes is a huge topic, and some of the areas we’ll be covering in future posts are:

  • Integrative design
  • Passive heating
  • Home energy storage
  • Zero-net energy for existing homes
  • Zero-net energy and LEED
  • Practical steps for finding a zero-net energy home builder
  • Examples of zero-net energy homes
  • Achieving a zero-net energy home cost-effectively
  • How the cost-benefit equation on zero-net energy homes is likely to change over the next five and ten years

As I get started on this series, I’d love to hear your comments and thoughts on what I’ve presented here, as well as other topics I should cover in future posts.

Ten Energy Predictions For The Next Decade

Snow on the San Gabriel Mountains (photo by Jerry Thompson1)
Snow on the San Gabriel Mountains (photo by Jerry Thompson1, CC 2.0 license)

On December 30 of last year (six days ago), my wife and I were in Pasadena, CA visiting the Greene and Greene exhibit at the Huntington Library. It was one of those glorious and rare smog-free days in the LA basin. The air sparkled, you could see for miles in every direction, and mountain range after mountain range was visible – all the way out to the snow-covered San Gabriels. Nowadays, the air is only ever this clear around the Christmas holiday, when the freeway traffic is substantially reduced and a lot of factories shut down for the week. It got me thinking about how the future – say ten to twenty years hence – may be unrecognizable in both dramatic and mundane ways. For example, smog-free days may no longer be rare in LA, once the economy has shifted off fossil fuels. (I suspect the traffic will remain, unfortunately!)

Like LA’s typical skies, the energy future is murky in the short term – this year and 2010 – and I’ll leave those predictions to others. But the big trends – sustainability, carbon fighting, and technological breakthroughs – enable us to make better sense of the mid- and long-term. Therefore, In the spirit of the New Year, the incoming administration, and the tipping point that the world has come to about climate change and sustainability, here are ten things I believe are very likely to happen in the next ten years.

  1. Residential solar PV will be cost effective in most U.S. locations (via a combination of price reduction, new design thinking, much more efficient homes, and a carbon tax on fossil fuels).
  2. Home energy storage – via batteries, hydrogen reforming, fuel cells, or other technology – will be available and installed in 10% of new homes in California, for when the sun don’t shine.
  3. More than 10% of new homes in California will be zero-net energy.
  4. 50% of new residential construction in California will be zero-net energy “ready.”
  5. The current LEED standards will be considered obsolete.
  6. More than 20% of peak grid electricity will come from excess capacity from residential solar PV.
  7. There will be general consensus that efficiency and frugality alone will not provide enough CO2 mitigation to prevent major climate change – we will need a technological solution to actually reducing atmospheric CO2 or artificially cooling the earth.
  8. There will be a mid-priced carbon fiber, plugin hybrid passenger car in production that gets more than 75 miles per gallon. The company making it will be the “next GM.”
  9. 10% of the cars on the road will be powered by 100% renewable energy and will be essentially non-polluting.
  10. New technologies for capturing carbon from the atmosphere will be available, powered by excess solar capacity.

What do you think? Am I off base here? Too optimistic? Too pessimistic? Let me know in the comments. I’d love to hear your thoughts, challenges, and predictions for 2018.

Zero-net Energy Series Coming Up

Over the next few weeks, I will be publishing a series on “zero-net energy” residences (related to predictions 1-6 above). This area is about to explode. We already have all the technology, and some people have the experience, to build “zero-net energy ready” houses cost effectively. And although there’s currently a premium to get to zero-net energy, over the next ten years this premium will go to zero, and probably it will be cost-effective to get to positive-net energy – where the house is generating more energy than it needs! Talk about a world-changing situation – it really is possible to have energy too cheap to meter, but it’s going to come off our roofs, not from a nuclear plant or one of those imaginary fusion reactors.

Integrated Design Makes “Smart Garage” Part of Utility’s Infrastructure

Garage of the Future
Garage of the Future (photo by Elsie esq., CC 2.0 Attribution License)

The Rocky Mountain Institute’s Andrew Demaria blogged a few weeks ago about “smart garages” that combine smart cars, a smart home network, and much smarter utilities into a synergistic system that optimizes power usage. After describing a “day in the life” of a smart garage:

Given the utility is experiencing a peak load period, it asks my house if it can use the spare power in the car’s battery and send that electricity elsewhere in the grid. What’s more, it will pay me for that power. Since I like being paid, I have already programmed the system to accept such requests.

The article then goes on to list the highlights of a recent Smart Garages conference organized by RMI. Attendees included representatives from auto manufacturers GM, Ford, and Nissan, utilities PG&E and Duke Energy, and consumer-focused companies Walmart and P&G.

Integrative design like smart garages requires all these organizations to work effectively together, based on official or de-facto standards. Although the cost of making such a transition will be hundreds of billions of dollars, the associated business opportunities, especially for those companies who can help tie all these disparate parts together, are commensurately huge.

A Note From The Fuel Cell Research Front

Methanol fuel cell.
Methanol fuel cell. Image via Wikipedia

I plan to do an in-depth post or series on fuel cells soon, because there is so much breakthrough work going on in this research area. Fuel cells are interesting on so many fronts – for example, they’re probably the best way to use the hydrogen generated by Daniel Nocera’s new hydrogen splitting method, announced in mid-August. And just since August, researchers have announced big improvements or cost reductions in every component of the fuel cell – membrane, catalyst, and electrodes.

This latest story from Technology Review covers a new membrane improvement for methanol fuel cells. As the article points out, methanol fuel cells have some key benefits compared to hydrogen cells, in particular that methanol is a liquid at normal temperatures, but they also have technical challenges. Paula Hammond and her team are addressing one of these:

In her lab at MIT, chemical-engineering professor Paula Hammond pinches a sliver of what looks like thick Saran wrap between tweezers. Though it appears un­remarkable, this polymer membrane can significantly increase the power output of a methanol fuel cell, which could make that technology suitable as a lighter, longer-­lasting, and more environmentally friendly alternative to batteries in consumer electronics such as cell phones and laptops.

Do you have questions about fuel cells that you’d like me to find answers to as I research my upcoming series? Let me know in the comments.

Enhanced by Zemanta

Top Green Energy Stories For August 2008

Top Fivewoodleywonderworks
Top Five Stories

August was a great month for energy storage breakthroughs! In addition, a big talking head talks big, and a business-of-green-energy announcement make my list of top stories.

1. Hydrogen from water
2. Fuel cell breakthrough #1: cheap catalyst
3. Fuel cell breakthrough #2: better cathode
4. Al Gore’s call to action: The U.S. should “produce all electricity from carbon-free sources by 2018.” (Actually from late July, but my blog didn’t start until August!)
5. Green energy investment up 60% YoY in 2007, on target for 60% YoY growth in 2008

Moore’s Law depended (and still depends) on a constant flow of breakthrough technologies, processes, scale, and designs. You can’t necessarily predict how Moore’s Law will continue to hold two years from now, or five years from now, but you can be confident that through some combination of technologies, processes, and designs, the price/performance of IT will continue to decline at an exponential rate.

The top five green energy stories of 2008 give an indication that the same types of forces are at play in the green energy world. Numbers 1, 2, and 3 each represent a potential 10x reduction in the cost of the most expensive part of a particular energy flow. For number 4, Gore used the bully pulpit of a Nobel Prize and Oscar (and, oh yeah, he was nearly president) in a most constructive way. And number 5 illustrates that green energy technologies are on a growth rate of doubling about every 18 months.

Did these stories excite you as much as they did me? Were there other green energy stories in August that you feel are more important?

, , , ,

Numbers and Facts About Energy

Chocolate Chip cookies have a lot of energy content (image from Wikipedia, licensed under CC Attribution Sharealike 2.5 license
Chocolate Chip cookies have a lot of energy content (image from Wikipedia, licensed under CC Attribution Sharealike 2.5 license

One of my pet peeves is news stories about energy that say something like “Flokistan just added 100 MWs in solar panels to its grid. This is enough to power 150 homes,” with no further numbers. I always want to know the context, like how many MWs does Flokistan use? How many homes are there in Flokistan? How does 100 MWs in solar panels compare in cost with putting in 100 MWs of coal-fired powerplants, and how long will it take to pay back?

The energy field is full of numbers – cars emit 19 tons of CO2 per year, solar panels cost $0.20/kWh, PG&E just contracted for 800 MWs of solar power in California. They are used freely, but seldom put into context. So I was very happy to discover an interesting online resource over the weekend: Richard Muller’s U.C. Berkeley class “Physics For Future Presidents.”

In one semester, my goal is to cover the physics that future world leaders need to know (and maybe present world leaders too.

Chapter one, Energy and Power (and the physics of explosions), of his textbook is online (at least temporarily) and it’s fascinating. Most interesting is the table near the beginning comparing the energy content per gram of various substances, including TNT, gasoline, hydrogen, various batteries, an asteroid traveling at 30 km/sec, and even chocolate chip cookies.

For example, a gram of gasoline has about 15 times as much energy content as a gram of TNT, and about half again as much energy content as a gram of ethanol. Hydrogen has almost three times the energy content of gasoline per gram, but even as a liquid, hydrogen is only about 1/10 as dense as gasoline, meaning that per volume, it has about 1/3 the energy content. Muller’s paper is full of useful rules of thumb, such as the following:

Remember this: Compared to gasoline, liquid hydrogen has

  • 3 x more energy per gram (or per lb)
  • 3 x less energy per gallon (or per liter)

He then goes on to discuss the relative merits of different forms of energy for powering cars, noting that gasoline is a particularly desirable fuel given its very high energy content and ease-of-use compared to, say hydrogen. Or batteries – which have 100x less energy density than gasoline. He also explains why having a big meteorite or asteroid hit Earth would be a bad thing.

If you’re interested in the numbers around energy, and how to compare them, I can definitely recommend a reading this chapter. The course is also available via podcast – see here for links, and covers not just energy, but terrorism, nukes, space, and global warming.

I’d be interested in hearing your comments about Muller’s information. If you have sources that you use for energy-related numbers, let me know about those too. I’m putting together a reference site for these sources, which I’ll link to on this blog as a static page when it’s ready.

Enhanced by Zemanta