We Must Reduce Energy Use, Not Just CO2 Emissions, To Prevent Catastrophic Global Warming

playing with fire
Playing With Fire (image by charles chan, CC 2.0 license)

An article in Sunday’s Science Daily reports on research showing that more than half of the Earth’s warming since the dawn of the industrial age is due to the heat released from our energy use, not atmospheric warming due to the greenhouse effect.

While the greenhouse effect is still a significant contributor – and will become more so as GHG levels in the atmosphere rise – simply the heat released when burning fuels is also being stored in the atmosphere, as well as in the earth, sea, and arctic ice.

The researchers have calculated that the heat energy accumulated in the atmosphere corresponds to a mere 6.6% of global warming, while the remaining heat is stored in the ground (31.5%), melting ice (33.4%) and sea water (28.5%). They point out that net heat emissions between the industrial revolution circa 1880 and the modern era at 2000 correspond to almost three quarters of the accumulated heat, i.e., global warming, during that period.

Their conclusion is that simply capturing our CO2 emissions, will not prevent global warming. We have to actually reduce the amount of heat we are releasing into the world via our energy use – which mostly involves burning things, and therefore generating waste heat.

The good news is that solar photovoltaics, wind power, even solar thermal generate much less, or even negative, waste heat than either conventional energy sources, or nuclear energy. And of course energy efficiency is the cheapest and most cost-effective mitigation we have at our fingertips.

Link

Australian solar and geothermal cheaper than coal and nuclear within 15 years

According this this analysis, from New Energy World Network, within 15 years the cost of concentrating solar power will be less than the cost of “clean” coal, at least in Australia. The analysis is based on the rates of change in cost between the two energy sources. With the cost of coal increasing, relatively, and CSP decreasing, the cost lines eventually cross, leaving CSP cheaper.

In addition, the article mentions offhandedly that connecting the Queensland and South Australian electricity grids would “likely pay for itself quickly just in increased efficiencies brought to the existing grid.”

The average Australian household could pay up to 30 per cent more per year by 2025 for electricity generated from coal and nuclear power than from concentrating solar and hot dry rock geothermal power, according to clean energy organisation DESERTEC-Australia.

This idea illustrates the kind of synergies that we need to find throughout the energy economy.

Link

(H/T to Benjamin Chambers for the link to the article.)

China’s Coal Plants Getting Less Dirty, How To Rebuild The Built Environment, Who To Follow on Twitter

industry
Smokestacks (image by shoothead, CC 2.0 licensed)

Some good news from China this week, and a blueprint for addressing the huge amount of energy used, and GHG’s generated, by the built environment:

German Solar PV Manufacturer Stakes a Claim in the U.S.

Top of Mt. Hood, Oregon
Mount Hood, Oregon (image by Tony the Misfit, CC 2.0 licensed)

The New York Times on Sunday reported about Solar World‘s new solar panel plant in Oregon. The Germany company is making a big ($300 million) bet that the United States is the place to be if you are a solar panel manufacturer.

The message for solar companies, Mr. Pichel says, is “get your butt over to the U.S. if you want to participate and get some of that stimulus package money.”

Solar photovoltaics still account for less than 1% of the electricity generated in the U.S. today. However, the article reports that in various markets, including California, the number of solar panels installed is doubling every year. At that kind of growth – even if it slows down slightly due to the current recession and credit crunch – in five to ten years solar electricity could account for a much more significant share of the electricity supply.

I’ve been focused lately in the blog on energy efficiency, and not so much on alternative energy sources, so it’s good to see that there’s still a lot of momentum going on there!

No Manhattan Project, But Don’t Say No To Breakthrough Innovations

a polar bear and her baby
The polar bears say "keep the innovations coming - it's getting warm out here!" (image by Just Being Myself, CC 2.0 licensed)

While I agree with Joseph Romm on Climate Progress that we can’t count on a “Manhattan Project”-style endeavour to engineer our way out of the climate crisis in the short term, nonetheless, I think it’s reasonable to have a certain expectation that technology will improve over the right timescale, so we can be ready to take advantage of it.

A few weeks ago Martin Brown had a great post on his Fairsnape blog on Recession Thoughts and Tips. One of his many excellent suggestions was

Stand in the future and observe the industry in 2016/2019 – climate change will not be ‘put on hold’ during the recession – so do you have a route to zero mapped out?

His suggestions apply, of course, not only in a recession, but also if you want to help make big changes happen. In particular, “Standing in the future” is critical for those who are trying to make changes in response to climate change to visualize how things must be (for us to survive) in 2020 or 2030, because only then can we figure out how to get there.

The key challenge for that kind of thing is thinking big enough! Small example: If you’d asked me twenty years ago, or even ten, if it was every going to be possible to watch video on my phone, I’d have said “No, there’s just not going to be enough bandwidth for that to happen. I don’t ever expect that to be something we can do.” Was I ever wrong! And I consider myself open-minded and an outside the box thinker!

It’s very likely that the technologies and practices that get us out of a climate change disaster aren’t invented yet, or at best are in labs somewhere. Those of us – the rest of us – who need to take those inchoate and early ideas and turn them into market realities need a LOT of imagination to forcefully move the world out of its current ruts.

That’s why I often post news about discoveries coming out of labs, or going into the development process. Daniel Nocera’s [intlink id=”162″ type=”post” target=”_blank”]hydrogen reforming[/intlink], and [intlink id=”181″ type=”post” target=”_blank”]nanotechnology breakthroughs[/intlink], or technologies like or based on them, will be changing our lives in the next 10, 20, or fifty years – whether by mitigating carbon, or helping us store or generate renewable energy, or perhaps in ways we haven’t even thought of yet.

If there are particular technologies you are watching, let me know in the comments – I’ve love to hear about them.

Shiny Rocks May Be Good For Solar Energy

Fools Gold
Fool's Gold (image by Clearly Ambiguous, CC 2.0 licensed)

Interesting note flying around the blogosphere yesterday (see here, here, and here, amongst many websites featuring the news) about a research project done at Berkeley. It found that, based on material cost and availability, solar photovoltaics made with iron pyrites (aka Fool’s Gold) are more likely to solve our energy crisis than PV made with silicon or CIGS thinfilms. This is due to both the cost of the raw materials and their availability – both crystalline silicon and the CIGS precursors are relatively expensive and relatively rare. Iron pyrite and its precursors are among the most common elements on earth, in contrast.

What we’ve found is that some leading thin films may be difficult to scale as high as global electricity consumption… if our objective is to supply the majority of electricity in this way, we must quickly consider alternative materials that are Earth-abundant, non-toxic and cheap. These are the materials that can get us to our goals more rapidly.

The paper noted that PV cells made with iron pyrite are not as efficient as those made with silicon, but here’s where it gets interesting. I did a Google search yesterday to find out just how efficient those iron pyrite solar cells are – and I can’t find them. There are a handful of papers about iron pyrite solar cells, but none that indicate it’s anywhere near being ready to compete even on the low-efficiency end. (E.g., see here, in a paper from 2000.)

So, that may mean I’m just not any good at searching on Google, and be that as it may. The other side of the coin is that this report lines up with what I’ve [intlink id=”119″ type=”post”]been saying since October[/intlink] – it’s not about the efficiency of the cells, it’s about the [intlink id=”194″ type=”post”]price/performance[/intlink]. We have plenty of surface area on which to put solar cells, even if they aren’t very efficient. What we don’t have is lots of extra money to pay for them – so low-efficiency cells that have a good price performance ratio – $1-2/kw or $0.10-0.30/kwh – are what we’re looking for.

(And of course, we need to be a lot more efficient in our energy usage, and be able to store that good sun power we’ve generated.)

In any case, I’m now looking forward to hearing about iron pyrite-based solar cells – if you know of any post-2000 research on this topic, definitely let me know!

DoE Secretary Steven Chu: We Need Nobel-Level Breakthroughs

Secretary of Energy Steven Chu
Secretary of Energy Steven Chu

Yesterday the New York Times published an interview (including some of the original audio) with our new Energy Secretary, Steven Chu. Among other comments, he said that to address the climate emergency, we need “Nobel-level breakthroughs” in several key areas – batteries, biofuels, and solar photovoltaics.” As an illustration, he pointed out:

The photovoltaics we have today, … without subsidy, and without even the additional cost of storage, it’s about a factor of five higher than electricity generation by gas or coal. Suppose someone comes along and invents a way of getting … solar photovoltaics at one fifth the cost, so you don’t even think about subsidies anymore. You just slap it everywhere… That, in my opinion, would take something, which I would say, is a bit of a breakthrough.”

There’s no arguing with that idea – if solar PV were five times cheaper, no one would need complicated “payback period” models to justify installing it. (Luckily, we do have those models, and so some people are taking the plunge.)

Of course, this is just the story of how technologies advance – it’s very familiar from the rise of semiconductors. A technology needs an ever-expanding “feedstock” of innovations, discoveries, and breakthroughs to grow at an exponential rate. In semiconductors, the history of technologies such as FET, MOS, CMOS, new clean room techniques, different types of lithography, and many other innovations each offered ever decreasing feature size and lower cost. This parade of innovations combined to ensure that just when one technology was reaching its limit of compactness, another newer and more efficient technology would be there to take its place. When the new one ran out of steam the cycle would repeat. (And several of those innovations resulted in Nobels.)

One example of the “old thinking” on PV is the projections about its availability and cost. Many of these projections assume a linear improvement in price/performance. To help save the world, the price/performance of solar electricity and batteries and efficiency and fuel cells must come down faster than the typical, linear projections – just as it did for semiconductors.

Luckily, despite a current dip in investment and research levels due to the economy, this is happening in the solar photovoltaics domain. [intlink id=”210″ type=”post”]New[/intlink] [intlink id=”218″ type=”post”]discoveries[/intlink], new manufacturing methods, and [intlink id=”66″ type=”post”]new thinking[/intlink] will continue to drive the price down. With luck, Chu’s support from his bully pulpit in the DoE can accelerate this process.

Hat tip to Watthead for turning me on to this interview.

Avoiding The Cliff Ahead

Uluwatu Temple, Bali (HDR)
A cliff in Bali (image by seanmcgrath, CC 2.0 licensed)

My green building and blogging colleague Barry Katz just had a post about James Howard Kunstler on his The Future Is Green Blog. Kunstler is one of the “dystopians” featured in a  New Yorker article last week. Kunstler is not sanguine about what the future is going to look like for us and our descendants. He thinks that not only is global warming likely to cause a disaster, but so is the current, or an upcoming, financial meltdown. Barry writes:

In his view, anything short of ending our dependence on cars for personal transportation is a doomed enterprise.

In his blog ClusterF**k nation, Kunstler writes:

I’ve been skeptical of the “stimulus” as sketched out so far, aimed at refurbishing the infrastructure of Happy Motoring. To me, this is the epitome of a campaign to sustain the unsustainable — since car-dependency is absolutely the last thing we need to shore up and promote.

Could the terrible things he predicts happen? In the New Yorker interview he provides as an example and a warning the famous fall of the Roman Empire – the city of Rome itself went from a population of over one million in 100 AD to less than 50,000 in a little over 400 years. And there certainly have been many other similar collapses in history – even in pre-Columbian North America there were multiple population collapses due to resource overuse (and genocide, but that’s another topic).

The difference today – at least we hope – is that we have some Cassandras – Al Gore, Kunstler, the IPCC, me and Barry Katz, among many others – warning us, and we have the means and opportunity to take the warning. The question is, do we have the will to put the pedal to the metal to address the problems? For me, I see that as doing the following, and doing it much faster than anyone is actually predicting is possible today:

  • Immediately stop wasting energy – this means getting our houses and commercial buildings more efficient, both new and existing ones; getting more efficient cars on the road
  • Build out utility scale renewable energy as fast as humanly possible
  • Develop and commercialize technologies for distributed energy generation (e.g., photovoltaic roof panels and paint, mini-wind turbines, ground source heat pumps) and get them cheap enough to deploy everywhere
  • Develop and commercialize technologies for distributed energy storage – effective energy storage is one of the key sticking points for my vision of zero net energy homes and for accelerating the decline of traditional power plants
  • Figure out a way, or several ways, to get some of the CO2 back out of the atmosphere – reforestation is a start (and can make a significant difference, according to this study)
  • Finally, make structural changes to the rules and incentives of life so people will work closer to where they live, will be able to take public transit in a reasonable way, choose to build highly efficient homes not because its the right thing to do, but because it’s the law, or there are other concrete benefits, and so that businesses will find it’s profitable to save the world – whether it’s through being more efficient themselves, or by helping the rest of us “do the right thing”

I call this blog “Keeping The Lights On” because I am optimistic that we’ll figure out how to have a decent life without CO2, that we’ll figure out how to keep the oceans from rising too much and losing too many species, and that civilization won’t collapse due to a financial crisis in the meantime. There are a lot of hurdles to be leapt to accomplish this, and many of them will be costly – but that means that someone’s going to make some money on them, so there will be incentives. And that’s the other half of the title – “Profitable Applications” – business can drive this transition, for profit. The big challenge is getting business ramped up fast enough to save our butts – I think it can happen, and even with the economy in its current sad state, we’re still seeing hopeful signs.

Well, that’s a couple of pages full of assertion and conjecture – I’d love to hear your thinking on this.

Green Building/Green Energy Salon in Menlo Park on Thursday

Green energy/green building salon – first meeting is this Thursday night (1/29) in Menlo Park.

My Soul
Green things (image by WTL photos, CC 2.0 license)

I’m starting a green energy/green building salon, and the first meeting is this Thursday night (1/29) in Menlo Park. Sign up on this invite/RSVP page to let me know if you’re coming.

If you’re interested in green buildings like me, or are working out how to have a new career in the green economy, you should drop by!

As I’ve mentioned, I have a modest little goal to ensure that all 50,000 housing starts in California in the year 2018 are “zero net energy.” That means they’ll generate as much or more energy as they consume in operation.

Do you have a green energy or green building goal? Do you want to talk about it? Do you want to help me achieve my goal? Maybe we can help each other.

Right now is the time to kick start the green economy. There’s a lot of intellectual capital here in Silicon Valley, a lot of us are committed to seeing the world pull out of our energy nosedive, and working together we’ll accomplish more than working by ourselves.

This salon will be an opportunity to share, to learn, and to meet others with complementary goals. I hope you can attend!

The location is:

1225 El Camino Real
Menlo Park, California 94025 Get Directions

Zero Net Energy Homes Part 4 – Honda Accord Versus Solar Panels

El �ºltimo de los mohicanos
Money ('El Altimo de los Mohicanos' - photo by wakalani, CC 2.0 licensed)

One of the biggest problems for residential solar electricity generation is that it just costs too darn much to install those panels on your roof. Over the next five and ten years this will change significantly as new developments from the labs make it into large-scale production. Eventually houses will be generating all their own electricity using photovoltaics as a matter of course.

But is there a way to think about the cost today that makes the cost even seem reasonable?

Well, if you’re thinking about buying a new car, you should read on. Each year you don’t buy a new car and continue to drive the one that you’ve already paid for, you pays for another year of your solar panels. At the end of the loan period (seven years in my example below), you’re getting free electricity from a system that increases the value of your home and has another 20 years of life at the minimum. If you’d bought a car, in seven years you’d be driving a rapidly depreciating vehicle that you’d probably have to replace soon.

For my house, after rebates, putting up solar panels today would cost about $22,000. This would be a 4kw system, offsetting about 92% of my electric bill, according to the solar power calculator at Clean Power Estimator. With a $3,000 down payment, and using SunPower’s “Smart Financing” with a seven year term, my monthly net cost would be about $250, after subtracting out my electric bill.

So, $22,000 total cost, $3,000 down payment, $250 monthly – that sounds just about exactly like buying a new car, doesn’t it? In fact, if I go to carsdirect.com and price out a new Honda Accord EX, that comes out to $22,372. My current car, a 2000 Honda Accord, is worth $4,000. So I need to finance $18,000. With a four year loan, I’ll be paying about $420 per month.

Netting it out, for each year that I make the decision to buy solar panels versus a new car, I actually save about $170 per month. At the same time, according to the solar power calculator, I eliminate almost four tons of CO2 (worth an additional $320 at the currently accepted value of $80/ton). After seven years, all that electricity will be free to me, for at least the rated life of the panels. And I’ll get most or all of the cost of the panels back when I sell my house. When I sell the new Honda, I’ll get a lot less than I paid for it.

As an additional note, if you’re thinking about buying a new BMW, such as an M3. If you chose a BMW 335i with Sport Package instead, you could put up the solar panels with the difference in cost: 1 BMW M3 = 1 BMW 330i + Sport Package + solar panels. You’d get nearly the same performance – much more than you can effectively use anywhere in the U.S. except on a race track – and you’d offset all the CO2 you’d be generating with your new car.

Definitely let me know if I’ve convinced you to put up solar panels instead of buying a car this year! Or if you have any other comments on this topic – I’d love to hear from you.