DoE Solar Energy Report On Market Penetration Outlook for Solar PV

A laundromat in California with solar collecto...
A laundromat in California with rooftop solar collectors (Image via Wikipedia)

As we contemplate the future of energy, and the combination of utility-level and distributed energy, and of different types – solar PV, solar thermal (heat your own hot water for showers), wind, etc., one question I have asked myself is how much energy can realistically be produced by the solar collectors on the roofs of our houses and office buildings in the U.S.?

It turns out the United States government has done some research on this! There’s a very interesting set of Department Of Energy reports, including one (PDF) on the market opportunities for grid-tied distributed solar PV. It figures out, state by state, how much roof surface is available, how attractive the incentives and infrastructure are (e.g., is there net metering?) and uses some simple algorithms to come up with an expected market penetration for solar PV on commercial and residential roofs. The resulting amount of electricity generated in this distributed fashion is amazingly high. Their best case scenario has installed MWs of rooftop solar PVs rising from about 2,000 in 2008 to almost 25,000 in 2015, more than a factor of ten increase over seven years.

Influence of system pricing, net metering policy, federal tax credits, and  interconnection policy on cumulative installations
Influence of system pricing, net metering policy, federal tax credits, and interconnection policy on cumulative installations

The report uses conservative numbers for solar PV cost improvements – breakthoughs and innovations like the ones mentioned in Technology Review every week (like this one), will make the market penetration even faster (and higher) as they come to market.

I was pleased to see that our government has done this kind of research. Think what could be done if funding for renewable energy research and development was an order of magnitude higher!

Enhanced by Zemanta

Study: Make Money and Create Jobs By Greening California’s Economy

Boutiques along Fillmore Street in Pacific Heights
Fillmore Street in San Francisco; Image via Wikipedia

The San Francisco Chronicle reports on the conclusions of a study just completed by the California State Air Resources Board that “going green” will be extremely beneficial to the state’s economy.

Under the California Global Warming Solutions Act of 2006, the state must impose a limit on the amount of pollutants companies emit and expand renewable energy. These changes, along with others, would result in 100,000 new jobs, boost the state economy by $27 billion and increase personal income by $14 billion, the study said.

It’s traditional to believe that becoming green – reducing energy usage, switching to renewable energy, and curbing greenhouse gas emissions – is costly and a net drag on economies. But studies like this one, as well as many others (see the Rocky Mountain Institute website for many more examples), show again that the future is going to be both green and profitable.

Enhanced by Zemanta

Another Analysis (More Detailed) Of Gore’s Call To Action on Renewable Energy

Wicked Barrel, by batintherain (Creative Commons license)
Wicked Barrel, by batintherain (Creative Commons license)

My very basic analysis of Al Gore’s call to action for “100% carbon free electricity” yesterday had the virtue of being dead simple. Jerome a Paris of The Oil Drum did a more detailed analysis back in July, based on wind energy generation, that reaches a similar conclusion to mine:

The short answer is: while 100% is probably unrealistic, it’s not unreasonable to expect to be able to get pretty close to that number (say, in the 50-90% range) in that timeframe, and it is very likely that it makes a LOT of sense economically.

As you’ll notice Jerome has made somewhat different assumptions from mine, particular in regard to the total electricity demand. As I mentioned, I plan to drill down more into my analysis and take it from the “zero-order” to “first-order”. I’ll also revisit my assumptions to make sure we’re comparing apples to apples.

Running Gore’s Numbers: An Edifying, If Simplistic, Analysis

Photo: Bill Gantz
Photo: Bill Gantz (Creative Commons License: Some Rights Reserved)

In his galvanizing speech a few weeks ago Academy Award and Nobel Prize-winner Al Gore exhorted the United States to “produce all electricity from “carbon-free sources” by 2018.” This is a pretty abstract goal, in those terms – Gore (appropriately) didn’t go into great detail about how this should be done or even what it means in specific practical steps. Depending on your point of view and background knowledge about energy, the goal may seem easy or incredibly difficult, or even impossible, especially without further analysis.

So I thought it would be interesting to run some numbers on the goal. The idea is not to define how it should be done, but to look at some very simple scenarios for how it could be done to get a sense of the scale involved. The calculation is based on the Topaz Solar Farm project, which California’s PG&E utility just contracted for – a 550 megawatt solar generating station.

My initial calculations makes some gigantic simplifying assumptions, so it’s not “correct” – but it should be the right order of magnitude. For details of the calculation, see the analysis below. The conclusion is as follows:

As a very rough estimate, we would need about 800 Topaz-sized plants, total cost about $1 trillion, to meet the U.S. electricity demand. And it would require about 8,000 square miles of sunny land.

The Key Parameter

Gore’s goal is equivalent to saying “We need to be able to generate on the order of 400 GW of electricity from carbon free sources.”

A few other useful or interesting numbers:

  • 550 megawatts: Generating capacity of the Topaz Solar Farm, one of two new solar electric plants PG&E is building in the California desert, announced a few weeks ago
  • 9.5 square miles: Size of the Topaz Solar Farm
  • $1 billion: Cost of the Topaz Solar Farm
  • 1 gigawatt: Generating capacity for a “large” coal-fired generating plant
  • 50 GW: California’s typical peak energy demand
  • 24%: portion of PG&E’s currently contracted generating capacity that is renewable

Assumptions

For the purposes of this analysis, I’m making a few simplifying assumptions. These make the analysis “invalid” from a technical sense, but allow us to quickly see the big picture:

  • Electricity demand will stay constant: This may or may not happen – in California energy intensity (the energy used per person) is going down, and this summer absolute energy use went down. Amory Lovins of the Rocky Mountain Institute believes we can cut energy intensity by 50% via efficiency, which would definitely cut energy use. On the other hand, most scenarios dealing with energy use assume it will continue to grow.
  • Disregard base load issues: The sun don’t shine at night, but people still use electricity then. This is called “base load.” You often hear that “solar can’t provide base load,” which may or may not be true in the future, depending on storage technologies that might be developed. In any case, I’m not considering it in this analysis – I’m assuming “a megawatt is a megawatt.”
  • Disregard transmission issues: We’ll assume that if the energy is generated somewhere in the U.S., it can be used anywhere else it’s needed.
  • Disregard technology improvements – this calculation is based on the technology planned for the Topaz Solar Farm

First cut

We now have enough data to make the most simplistic conceivable analysis. How many Topaz Solar Farm equivalents (TSFs) would we need to supply total U.S. energy demand (given the assumptions above)?

Total demand = 400 GW

TSF = 550 MW

Demand/capacity = 400 GW/550 MW = 800 (number of plants needed)

Cost = 800 * $1 billion = $1 trillion (approximately)

Conclusion: In our simplified energy world, we’d need about 800 Topaz-sized plants, total cost about $1 trillion, to meet the U.S. electricity demand. And it would require about 8,000 square miles of sunny land.

Now, there are many ways that this analysis is “wrong” – since my assumptions simplify the world quite a bit. So it could easy be off by a factor of 50% or more. But, because the assumptions also tend to cancel each other out, it’s not off by a factor of five, say. For example, I’m not considering base load (which solar PV today can’t provide effectively), but on the other hand, solar PV is the most expensive energy source. We will probably need more than 800 plants, but a lot of them will be cheaper, per megawatt, than the Topaz Solar Farm.

In future posts I will expand this model to make it less simplistic and more realistic, and to take into account technology improvements, base load requirements, the ability of energy efficiency to change the demand line, and lots of other details that are just dropped on the floor for this analysis.

I’m very interested to hear your comments on this analysis. In particular, I hope for some constructive guidance on the next steps for making it more realistic. I want a simple model that’s easy for the layperson to understand, but which doesn’t over-simplify too much (as this model does). I’d consider this a “zero-order” approximation – the next one should be a “first-order” approximation.

Other reading

  • The New York Times’ Dot Earth blog posted the text of Gore’s speech and allowed commenters to annotate it – interesting reading if you have a few hours to get through all the comments!
Enhanced by Zemanta